data2vec
copied
5 changed files with 110 additions and 1 deletions
@ -1,2 +1,63 @@ |
|||
# data2vec-text |
|||
# Text Embdding with data2vec |
|||
|
|||
*author: David Wang* |
|||
|
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
|||
## Description |
|||
|
|||
This operator extracts features for text with [data2vec](https://arxiv.org/abs/2202.03555). The core idea is to predict latent representations of the full input data based on a masked view of the input in a self-distillation setup using a standard Transformer architecture. |
|||
|
|||
<br /> |
|||
|
|||
|
|||
## Code Example |
|||
|
|||
Use the pre-trained model to generate a text embedding for the sentence "Hello, world.". |
|||
|
|||
*Write the pipeline in simplified style*: |
|||
|
|||
```python |
|||
import towhee |
|||
|
|||
towhee.dc(["Hello, world."]) \ |
|||
.text_embedding.data2vec_text() \ |
|||
.show() |
|||
|
|||
``` |
|||
|
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
|||
## Factory Constructor |
|||
|
|||
Create the operator via the following factory method |
|||
|
|||
***data2vec_text()*** |
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
|||
## Interface |
|||
|
|||
|
|||
**Parameters:** |
|||
|
|||
***text:*** *str* |
|||
|
|||
The text in string. |
|||
|
|||
|
|||
|
|||
**Returns:** *numpy.ndarray* |
|||
|
|||
The text embedding extracted by model. |
|||
|
|||
|
|||
|
|||
|
@ -0,0 +1,19 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
from .data2vec_text import Data2VecText |
|||
|
|||
|
|||
def data2vec_text(model_name='facebook/data2vec-vision-base'): |
|||
return Data2Text(model_name) |
@ -0,0 +1,27 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
import numpy |
|||
import torch |
|||
from transformers import RobertaTokenizer, Data2VecTextModel |
|||
from towhee.operator.base import NNOperator |
|||
|
|||
class Data2VecText(NNOperator): |
|||
def __init__(self): |
|||
self.model = Data2VecTextModel.from_pretrained("facebook/data2vec-text-base") |
|||
self.tokenizer = RobertaTokenizer.from_pretrained("facebook/data2vec-text-base") |
|||
|
|||
def __call__(self, text: str) -> numpy.ndarray: |
|||
inputs = self.tokenizer(data, return_tensors="pt") |
|||
outputs = self.model(**inputs) |
|||
return outputs.pooler_output.detach().cpu().numpy() |
@ -0,0 +1,2 @@ |
|||
numpy |
|||
transformers>4.19.0 |
Loading…
Reference in new issue