# Text Embedding with data2vec *author: David Wang*
## Description This operator extracts features for text with [data2vec](https://arxiv.org/abs/2202.03555). The core idea is to predict latent representations of the full input data based on a masked view of the input in a self-distillation setup using a standard Transformer architecture.
## Code Example Use the pre-trained model to generate a text embedding for the sentence "Hello, world.". *Write a pipeline with explicit inputs/outputs name specifications: ```python from towhee import pipe, ops, DataCollection p = ( pipe.input('text') .map('text', 'vec', ops.text_embedding.data2vec(model_name='facebook/data2vec-text-base')) .output('text', 'vec') ) DataCollection(p('Hello, world.')).show() ```
## Factory Constructor Create the operator via the following factory method ***data2vec(model_name='facebook/data2vec-text-base')*** **Parameters:** ​ ***model_name***: *str* The model name in string. The default value is "facebook/data2vec-text-base". Supported model name: - facebook/data2vec-text-base
## Interface **Parameters:** ​ ***text:*** *str* ​ The text in string. **Returns:** *numpy.ndarray* ​ The text embedding extracted by model.