# Text Embedding with DPR *author: Kyle He*
## Description This operator uses Dense Passage Retrieval (DPR) to convert long text to embeddings. Dense Passage Retrieval (DPR) is a set of tools and models for state-of-the-art open-domain Q&A research. It was introduced in Dense Passage Retrieval for Open-Domain Question Answering by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih[1]. **DPR** models were proposed in "Dense Passage Retrieval for Open-Domain Question Answering"[2]. In this work, they show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dual-encoder framework[2]. ### References [1].https://huggingface.co/docs/transformers/model_doc/dpr [2].https://arxiv.org/abs/2004.04906
## Code Example Use the pre-trained model "facebook/dpr-ctx_encoder-single-nq-base" to generate a text embedding for the sentence "Hello, world.". *Write the pipeline*: ```python from towhee import pipe, ops, DataCollection p = ( pipe.input('text') .map('text', 'vec', ops.text_embedding.dpr(model_name='facebook/dpr-ctx_encoder-single-nq-base')) .output('text', 'vec') ) DataCollection(p('Hello, world.')).show() ```
## Factory Constructor Create the operator via the following factory method: ***text_embedding.dpr(model_name="facebook/dpr-ctx_encoder-single-nq-base")*** **Parameters:** ***model_name***: *str* The model name in string. The default value is "facebook/dpr-ctx_encoder-single-nq-base". Supported model names: - facebook/dpr-ctx_encoder-single-nq-base - facebook/dpr-ctx_encoder-multiset-base
## Interface The operator takes a text in string as input. It loads tokenizer and pre-trained model using model name and then return text embedding in ndarray. **Parameters:** ***text***: *str* The text in string. **Returns**: *numpy.ndarray* The text embedding extracted by model. # More Resources - [The guide to text-embedding-ada-002 model | OpenAI](https://zilliz.com/ai-models/text-embedding-ada-002): text-embedding-ada-002: OpenAI's legacy text embedding model; average price/performance compared to text-embedding-3-large and text-embedding-3-small. - [Sentence Transformers for Long-Form Text - Zilliz blog](https://zilliz.com/learn/Sentence-Transformers-for-Long-Form-Text): Deep diving into modern transformer-based embeddings for long-form text. - [Building Open Source Chatbots with LangChain and Milvus in 5m - Zilliz blog](https://zilliz.com/blog/building-open-source-chatbot-using-milvus-and-langchain-in-5-minutes): A start-to-finish tutorial for RAG retrieval and question-answering chatbot on custom documents using Milvus, LangChain, and an open-source LLM. - [Tutorial: Diving into Text Embedding Models | Zilliz Webinar](https://zilliz.com/event/tutorial-text-embedding-models): Register for a free webinar diving into text embedding models in a presentation and tutorial - [Tutorial: Diving into Text Embedding Models | Zilliz Webinar](https://zilliz.com/event/tutorial-text-embedding-models/success): Register for a free webinar diving into text embedding models in a presentation and tutorial - [The guide to text-embedding-3-small | OpenAI](https://zilliz.com/ai-models/text-embedding-3-small): text-embedding-3-small: OpenAI’s small text embedding model optimized for accuracy and efficiency with a lower cost. - [Evaluating Your Embedding Model - Zilliz blog](https://zilliz.com/learn/evaluating-your-embedding-model): Review some practical examples to evaluate different text embedding models. - [The guide to voyage-large-2 | Voyage AI](https://zilliz.com/ai-models/voyage-large-2): voyage-large-2: general-purpose text embedding model; optimized for retrieval quality; ideal for tasks like summarization, clustering, and classification.