|
|
|
# This script is hacked and modified from https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py
|
|
|
|
# For more specified training tasks, please refer https://github.com/huggingface/transformers/tree/main/examples/pytorch
|
|
|
|
import dataclasses
|
|
|
|
import logging
|
|
|
|
import math
|
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
from dataclasses import dataclass, field
|
|
|
|
from itertools import chain
|
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
import datasets
|
|
|
|
from datasets import load_dataset
|
|
|
|
|
|
|
|
import evaluate
|
|
|
|
import transformers
|
|
|
|
from transformers import (
|
|
|
|
MODEL_FOR_MASKED_LM_MAPPING,
|
|
|
|
DataCollatorForLanguageModeling,
|
|
|
|
TrainingArguments,
|
|
|
|
is_torch_tpu_available,
|
|
|
|
set_seed,
|
|
|
|
)
|
|
|
|
from transformers.trainer_utils import get_last_checkpoint
|
|
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
|
|
|
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
|
|
|
|
|
|
|
|
|
|
|
def dataclass_from_dict(klass, d):
|
|
|
|
try:
|
|
|
|
fieldtypes = {f.name: f.type for f in dataclasses.fields(klass)}
|
|
|
|
return klass(**{f: dataclass_from_dict(fieldtypes[f], d[f]) for f in d})
|
|
|
|
except:
|
|
|
|
return d # Not a dataclass field
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class DataTrainingArguments:
|
|
|
|
"""
|
|
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
|
|
"""
|
|
|
|
|
|
|
|
dataset_name: Optional[str] = field(
|
|
|
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
|
|
|
)
|
|
|
|
dataset_config_name: Optional[str] = field(
|
|
|
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
|
|
)
|
|
|
|
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
|
|
|
|
validation_file: Optional[str] = field(
|
|
|
|
default=None,
|
|
|
|
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
|
|
|
|
)
|
|
|
|
overwrite_cache: bool = field(
|
|
|
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
|
|
|
)
|
|
|
|
validation_split_percentage: Optional[int] = field(
|
|
|
|
default=5,
|
|
|
|
metadata={
|
|
|
|
"help": "The percentage of the train set used as validation set in case there's no validation split"
|
|
|
|
},
|
|
|
|
)
|
|
|
|
max_seq_length: Optional[int] = field(
|
|
|
|
default=None,
|
|
|
|
metadata={
|
|
|
|
"help": (
|
|
|
|
"The maximum total input sequence length after tokenization. Sequences longer "
|
|
|
|
"than this will be truncated."
|
|
|
|
)
|
|
|
|
},
|
|
|
|
)
|
|
|
|
preprocessing_num_workers: Optional[int] = field(
|
|
|
|
default=None,
|
|
|
|
metadata={"help": "The number of processes to use for the preprocessing."},
|
|
|
|
)
|
|
|
|
mlm_probability: float = field(
|
|
|
|
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
|
|
|
|
)
|
|
|
|
line_by_line: bool = field(
|
|
|
|
default=False,
|
|
|
|
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
|
|
|
|
)
|
|
|
|
pad_to_max_length: bool = field(
|
|
|
|
default=False,
|
|
|
|
metadata={
|
|
|
|
"help": (
|
|
|
|
"Whether to pad all samples to `max_seq_length`. "
|
|
|
|
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
|
|
|
|
)
|
|
|
|
},
|
|
|
|
)
|
|
|
|
max_train_samples: Optional[int] = field(
|
|
|
|
default=None,
|
|
|
|
metadata={
|
|
|
|
"help": (
|
|
|
|
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
|
|
"value if set."
|
|
|
|
)
|
|
|
|
},
|
|
|
|
)
|
|
|
|
max_eval_samples: Optional[int] = field(
|
|
|
|
default=None,
|
|
|
|
metadata={
|
|
|
|
"help": (
|
|
|
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
|
|
|
"value if set."
|
|
|
|
)
|
|
|
|
},
|
|
|
|
)
|
|
|
|
|
|
|
|
def __post_init__(self):
|
|
|
|
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
|
|
|
raise ValueError("Need either a dataset name or a training/validation file.")
|
|
|
|
else:
|
|
|
|
if self.train_file is not None:
|
|
|
|
extension = self.train_file.split(".")[-1]
|
|
|
|
if extension not in ["csv", "json", "txt"]:
|
|
|
|
raise ValueError("`train_file` should be a csv, a json or a txt file.")
|
|
|
|
if self.validation_file is not None:
|
|
|
|
extension = self.validation_file.split(".")[-1]
|
|
|
|
if extension not in ["csv", "json", "txt"]:
|
|
|
|
raise ValueError("`validation_file` should be a csv, a json or a txt file.")
|
|
|
|
|
|
|
|
|
|
|
|
def train_mlm_with_hf_trainer(model,
|
|
|
|
tokenizer,
|
|
|
|
data_args,
|
|
|
|
training_args,
|
|
|
|
**kwargs):
|
|
|
|
from transformers import Trainer
|
|
|
|
print('train mlm with hugging face transformers trainer')
|
|
|
|
|
|
|
|
data_args = dataclass_from_dict(DataTrainingArguments, data_args)
|
|
|
|
training_args = dataclass_from_dict(TrainingArguments, training_args)
|
|
|
|
|
|
|
|
# Setup logging
|
|
|
|
logging.basicConfig(
|
|
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
|
|
)
|
|
|
|
|
|
|
|
log_level = training_args.get_process_log_level()
|
|
|
|
logger.setLevel(log_level)
|
|
|
|
datasets.utils.logging.set_verbosity(log_level)
|
|
|
|
transformers.utils.logging.set_verbosity(log_level)
|
|
|
|
transformers.utils.logging.enable_default_handler()
|
|
|
|
transformers.utils.logging.enable_explicit_format()
|
|
|
|
|
|
|
|
# Log on each process the small summary:
|
|
|
|
logger.warning(
|
|
|
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
|
|
|
|
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
|
|
|
)
|
|
|
|
# Set the verbosity to info of the Transformers logger (on main process only):
|
|
|
|
logger.info(f"Training/evaluation parameters {training_args}")
|
|
|
|
|
|
|
|
# Detecting last checkpoint.
|
|
|
|
last_checkpoint = None
|
|
|
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
|
|
|
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
|
|
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
|
|
|
raise ValueError(
|
|
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
|
|
|
"Use --overwrite_output_dir to overcome."
|
|
|
|
)
|
|
|
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
|
|
|
logger.info(
|
|
|
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
|
|
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
|
|
|
)
|
|
|
|
|
|
|
|
# Set seed before initializing model.
|
|
|
|
set_seed(training_args.seed)
|
|
|
|
|
|
|
|
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
|
|
|
|
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
|
|
|
# (the dataset will be downloaded automatically from the datasets Hub
|
|
|
|
#
|
|
|
|
# For CSV/JSON files, this script will use the column called 'text' or the first column. You can easily tweak this
|
|
|
|
# behavior (see below)
|
|
|
|
#
|
|
|
|
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
|
|
|
# download the dataset.
|
|
|
|
if data_args.dataset_name is not None:
|
|
|
|
# Downloading and loading a dataset from the hub.
|
|
|
|
raw_datasets = load_dataset(
|
|
|
|
data_args.dataset_name,
|
|
|
|
data_args.dataset_config_name,
|
|
|
|
# cache_dir=model_args.cache_dir,
|
|
|
|
# use_auth_token=True if model_args.use_auth_token else None,
|
|
|
|
)
|
|
|
|
if "validation" not in raw_datasets.keys():
|
|
|
|
raw_datasets["validation"] = load_dataset(
|
|
|
|
data_args.dataset_name,
|
|
|
|
data_args.dataset_config_name,
|
|
|
|
split=f"train[:{data_args.validation_split_percentage}%]",
|
|
|
|
# cache_dir=model_args.cache_dir,
|
|
|
|
# use_auth_token=True if model_args.use_auth_token else None,
|
|
|
|
)
|
|
|
|
raw_datasets["train"] = load_dataset(
|
|
|
|
data_args.dataset_name,
|
|
|
|
data_args.dataset_config_name,
|
|
|
|
split=f"train[{data_args.validation_split_percentage}%:]",
|
|
|
|
# cache_dir=model_args.cache_dir,
|
|
|
|
# use_auth_token=True if model_args.use_auth_token else None,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
data_files = {}
|
|
|
|
if data_args.train_file is not None:
|
|
|
|
data_files["train"] = data_args.train_file
|
|
|
|
extension = data_args.train_file.split(".")[-1]
|
|
|
|
if data_args.validation_file is not None:
|
|
|
|
data_files["validation"] = data_args.validation_file
|
|
|
|
extension = data_args.validation_file.split(".")[-1]
|
|
|
|
if extension == "txt":
|
|
|
|
extension = "text"
|
|
|
|
raw_datasets = load_dataset(
|
|
|
|
extension,
|
|
|
|
data_files=data_files,
|
|
|
|
# cache_dir=model_args.cache_dir,
|
|
|
|
# use_auth_token=True if model_args.use_auth_token else None,
|
|
|
|
)
|
|
|
|
|
|
|
|
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
|
|
|
|
if "validation" not in raw_datasets.keys():
|
|
|
|
raw_datasets["validation"] = load_dataset(
|
|
|
|
extension,
|
|
|
|
data_files=data_files,
|
|
|
|
split=f"train[:{data_args.validation_split_percentage}%]",
|
|
|
|
# cache_dir=model_args.cache_dir,
|
|
|
|
# use_auth_token=True if model_args.use_auth_token else None,
|
|
|
|
)
|
|
|
|
raw_datasets["train"] = load_dataset(
|
|
|
|
extension,
|
|
|
|
data_files=data_files,
|
|
|
|
split=f"train[{data_args.validation_split_percentage}%:]",
|
|
|
|
# cache_dir=model_args.cache_dir,
|
|
|
|
# use_auth_token=True if model_args.use_auth_token else None,
|
|
|
|
)
|
|
|
|
|
|
|
|
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
|
|
|
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
|
|
|
|
|
|
|
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
|
|
|
|
# on a small vocab and want a smaller embedding size, remove this test.
|
|
|
|
embedding_size = model.get_input_embeddings().weight.shape[0]
|
|
|
|
if len(tokenizer) > embedding_size:
|
|
|
|
model.resize_token_embeddings(len(tokenizer))
|
|
|
|
|
|
|
|
# Preprocessing the datasets.
|
|
|
|
# First we tokenize all the texts.
|
|
|
|
if training_args.do_train:
|
|
|
|
column_names = raw_datasets["train"].column_names
|
|
|
|
else:
|
|
|
|
column_names = raw_datasets["validation"].column_names
|
|
|
|
text_column_name = "text" if "text" in column_names else column_names[0]
|
|
|
|
|
|
|
|
if data_args.max_seq_length is None:
|
|
|
|
max_seq_length = tokenizer.model_max_length
|
|
|
|
if max_seq_length > 1024:
|
|
|
|
logger.warning(
|
|
|
|
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
|
|
|
|
"Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
|
|
|
|
)
|
|
|
|
max_seq_length = 1024
|
|
|
|
else:
|
|
|
|
if data_args.max_seq_length > tokenizer.model_max_length:
|
|
|
|
logger.warning(
|
|
|
|
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
|
|
|
|
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
|
|
|
|
)
|
|
|
|
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
|
|
|
|
|
|
|
|
if data_args.line_by_line:
|
|
|
|
# When using line_by_line, we just tokenize each nonempty line.
|
|
|
|
padding = "max_length" if data_args.pad_to_max_length else False
|
|
|
|
|
|
|
|
def tokenize_function(examples):
|
|
|
|
# Remove empty lines
|
|
|
|
examples[text_column_name] = [
|
|
|
|
line for line in examples[text_column_name] if len(line) > 0 and not line.isspace()
|
|
|
|
]
|
|
|
|
return tokenizer(
|
|
|
|
examples[text_column_name],
|
|
|
|
padding=padding,
|
|
|
|
truncation=True,
|
|
|
|
max_length=max_seq_length,
|
|
|
|
# We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it
|
|
|
|
# receives the `special_tokens_mask`.
|
|
|
|
return_special_tokens_mask=True,
|
|
|
|
)
|
|
|
|
|
|
|
|
with training_args.main_process_first(desc="dataset map tokenization"):
|
|
|
|
tokenized_datasets = raw_datasets.map(
|
|
|
|
tokenize_function,
|
|
|
|
batched=True,
|
|
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
|
|
remove_columns=[text_column_name],
|
|
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
|
|
desc="Running tokenizer on dataset line_by_line",
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
# Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
|
|
|
|
# We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
|
|
|
|
# efficient when it receives the `special_tokens_mask`.
|
|
|
|
def tokenize_function(examples):
|
|
|
|
return tokenizer(examples[text_column_name], return_special_tokens_mask=True)
|
|
|
|
|
|
|
|
with training_args.main_process_first(desc="dataset map tokenization"):
|
|
|
|
tokenized_datasets = raw_datasets.map(
|
|
|
|
tokenize_function,
|
|
|
|
batched=True,
|
|
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
|
|
remove_columns=column_names,
|
|
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
|
|
desc="Running tokenizer on every text in dataset",
|
|
|
|
)
|
|
|
|
|
|
|
|
# Main data processing function that will concatenate all texts from our dataset and generate chunks of
|
|
|
|
# max_seq_length.
|
|
|
|
def group_texts(examples):
|
|
|
|
# Concatenate all texts.
|
|
|
|
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
|
|
|
|
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
|
|
|
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
|
|
|
|
# customize this part to your needs.
|
|
|
|
if total_length >= max_seq_length:
|
|
|
|
total_length = (total_length // max_seq_length) * max_seq_length
|
|
|
|
# Split by chunks of max_len.
|
|
|
|
result = {
|
|
|
|
k: [t[i: i + max_seq_length] for i in range(0, total_length, max_seq_length)]
|
|
|
|
for k, t in concatenated_examples.items()
|
|
|
|
}
|
|
|
|
return result
|
|
|
|
|
|
|
|
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
|
|
|
|
# remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
|
|
|
|
# might be slower to preprocess.
|
|
|
|
#
|
|
|
|
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
|
|
|
|
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
|
|
|
|
|
|
|
|
with training_args.main_process_first(desc="grouping texts together"):
|
|
|
|
tokenized_datasets = tokenized_datasets.map(
|
|
|
|
group_texts,
|
|
|
|
batched=True,
|
|
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
|
|
desc=f"Grouping texts in chunks of {max_seq_length}",
|
|
|
|
)
|
|
|
|
|
|
|
|
if training_args.do_train:
|
|
|
|
if "train" not in tokenized_datasets:
|
|
|
|
raise ValueError("--do_train requires a train dataset")
|
|
|
|
train_dataset = tokenized_datasets["train"]
|
|
|
|
if data_args.max_train_samples is not None:
|
|
|
|
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
|
|
|
|
train_dataset = train_dataset.select(range(max_train_samples))
|
|
|
|
|
|
|
|
if training_args.do_eval:
|
|
|
|
if "validation" not in tokenized_datasets:
|
|
|
|
raise ValueError("--do_eval requires a validation dataset")
|
|
|
|
eval_dataset = tokenized_datasets["validation"]
|
|
|
|
if data_args.max_eval_samples is not None:
|
|
|
|
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
|
|
|
|
eval_dataset = eval_dataset.select(range(max_eval_samples))
|
|
|
|
|
|
|
|
def preprocess_logits_for_metrics(logits, labels):
|
|
|
|
if isinstance(logits, tuple):
|
|
|
|
# Depending on the model and config, logits may contain extra tensors,
|
|
|
|
# like past_key_values, but logits always come first
|
|
|
|
logits = logits[0]
|
|
|
|
return logits.argmax(dim=-1)
|
|
|
|
|
|
|
|
metric = evaluate.load("accuracy")
|
|
|
|
|
|
|
|
def compute_metrics(eval_preds):
|
|
|
|
preds, labels = eval_preds
|
|
|
|
# preds have the same shape as the labels, after the argmax(-1) has been calculated
|
|
|
|
# by preprocess_logits_for_metrics
|
|
|
|
labels = labels.reshape(-1)
|
|
|
|
preds = preds.reshape(-1)
|
|
|
|
mask = labels != -100
|
|
|
|
labels = labels[mask]
|
|
|
|
preds = preds[mask]
|
|
|
|
return metric.compute(predictions=preds, references=labels)
|
|
|
|
|
|
|
|
# Data collator
|
|
|
|
# This one will take care of randomly masking the tokens.
|
|
|
|
pad_to_multiple_of_8 = data_args.line_by_line and training_args.fp16 and not data_args.pad_to_max_length
|
|
|
|
data_collator = DataCollatorForLanguageModeling(
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
mlm_probability=data_args.mlm_probability,
|
|
|
|
pad_to_multiple_of=8 if pad_to_multiple_of_8 else None,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Initialize our Trainer
|
|
|
|
trainer = Trainer(
|
|
|
|
model=model,
|
|
|
|
args=training_args,
|
|
|
|
train_dataset=train_dataset if training_args.do_train else None,
|
|
|
|
eval_dataset=eval_dataset if training_args.do_eval else None,
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
data_collator=data_collator,
|
|
|
|
compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
|
|
|
|
preprocess_logits_for_metrics=preprocess_logits_for_metrics
|
|
|
|
if training_args.do_eval and not is_torch_tpu_available()
|
|
|
|
else None,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Training
|
|
|
|
if training_args.do_train:
|
|
|
|
checkpoint = None
|
|
|
|
if training_args.resume_from_checkpoint is not None:
|
|
|
|
checkpoint = training_args.resume_from_checkpoint
|
|
|
|
elif last_checkpoint is not None:
|
|
|
|
checkpoint = last_checkpoint
|
|
|
|
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
|
|
|
trainer.save_model() # Saves the tokenizer too for easy upload
|
|
|
|
metrics = train_result.metrics
|
|
|
|
|
|
|
|
max_train_samples = (
|
|
|
|
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
|
|
|
|
)
|
|
|
|
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
|
|
|
|
|
|
|
trainer.log_metrics("train", metrics)
|
|
|
|
trainer.save_metrics("train", metrics)
|
|
|
|
trainer.save_state()
|
|
|
|
|
|
|
|
# Evaluation
|
|
|
|
if training_args.do_eval:
|
|
|
|
logger.info("*** Evaluate ***")
|
|
|
|
|
|
|
|
metrics = trainer.evaluate()
|
|
|
|
|
|
|
|
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
|
|
|
|
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
|
|
|
|
try:
|
|
|
|
perplexity = math.exp(metrics["eval_loss"])
|
|
|
|
except OverflowError:
|
|
|
|
perplexity = float("inf")
|
|
|
|
metrics["perplexity"] = perplexity
|
|
|
|
|
|
|
|
trainer.log_metrics("eval", metrics)
|
|
|
|
trainer.save_metrics("eval", metrics)
|
|
|
|
|
|
|
|
print('done mlm.')
|