logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

196 lines
6.8 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy
from transformers import AutoTokenizer, AutoModel
from towhee.operator import NNOperator
from towhee import register
import warnings
import logging
warnings.filterwarnings('ignore')
logging.getLogger("transformers").setLevel(logging.ERROR)
log = logging.getLogger()
@register(output_schema=['vec'])
class AutoTransformers(NNOperator):
"""
NLP embedding operator that uses the pretrained transformers model gathered by huggingface.
Args:
model_name (`str`):
Which model to use for the embeddings.
"""
def __init__(self, model_name: str = "bert-base-uncased") -> None:
super().__init__()
self.model_name = model_name
try:
self.model = AutoModel.from_pretrained(model_name)
except Exception as e:
model_list = get_model_list()
if model_name not in model_list:
log.error(f"Invalid model name: {model_name}. Supported model names: {model_list}")
else:
log.error(f"Fail to load model by name: {self.model_name}")
raise e
try:
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
except Exception as e:
log.error(f'Fail to load tokenizer by name: {self.model_name}')
raise e
def __call__(self, txt: str) -> numpy.ndarray:
try:
inputs = self.tokenizer(txt, return_tensors="pt")
except Exception as e:
log.error(f'Invalid input for the tokenizer: {self.model_name}')
raise e
try:
outs = self.model(**inputs)
except Exception as e:
log.error(f'Invalid input for the model: {self.model_name}')
raise e
try:
features = outs.last_hidden_state.squeeze(0)
except Exception as e:
log.error(f'Fail to extract features by model: {self.model_name}')
raise e
vec = features.detach().numpy()
return vec
def get_model_list():
full_list = [
"bert-large-uncased",
"bert-base-cased",
"bert-large-cased",
"bert-base-multilingual-uncased",
"bert-base-multilingual-cased",
"bert-base-chinese",
"bert-base-german-cased",
"bert-large-uncased-whole-word-masking",
"bert-large-cased-whole-word-masking",
"bert-large-uncased-whole-word-masking-finetuned-squad",
"bert-large-cased-whole-word-masking-finetuned-squad",
"bert-base-cased-finetuned-mrpc",
"bert-base-german-dbmdz-cased",
"bert-base-german-dbmdz-uncased",
"cl-tohoku/bert-base-japanese-whole-word-masking",
"cl-tohoku/bert-base-japanese-char",
"cl-tohoku/bert-base-japanese-char-whole-word-masking",
"TurkuNLP/bert-base-finnish-cased-v1",
"TurkuNLP/bert-base-finnish-uncased-v1",
"wietsedv/bert-base-dutch-cased",
"google/bigbird-roberta-base",
"google/bigbird-roberta-large",
"google/bigbird-base-trivia-itc",
"albert-base-v1",
"albert-large-v1",
"albert-xlarge-v1",
"albert-xxlarge-v1",
"albert-base-v2",
"albert-large-v2",
"albert-xlarge-v2",
"albert-xxlarge-v2",
"facebook/bart-large",
"google/bert_for_seq_generation_L-24_bbc_encoder",
"google/bigbird-pegasus-large-arxiv",
"google/bigbird-pegasus-large-pubmed",
"google/bigbird-pegasus-large-bigpatent",
"google/canine-s",
"google/canine-c",
"YituTech/conv-bert-base",
"YituTech/conv-bert-medium-small",
"YituTech/conv-bert-small",
"ctrl",
"microsoft/deberta-base",
"microsoft/deberta-large",
"microsoft/deberta-xlarge",
"microsoft/deberta-base-mnli",
"microsoft/deberta-large-mnli",
"microsoft/deberta-xlarge-mnli",
"distilbert-base-uncased",
"distilbert-base-uncased-distilled-squad",
"distilbert-base-cased",
"distilbert-base-cased-distilled-squad",
"distilbert-base-german-cased",
"distilbert-base-multilingual-cased",
"distilbert-base-uncased-finetuned-sst-2-english",
"google/electra-small-generator",
"google/electra-base-generator",
"google/electra-large-generator",
"google/electra-small-discriminator",
"google/electra-base-discriminator",
"google/electra-large-discriminator",
"google/fnet-base",
"google/fnet-large",
"facebook/wmt19-ru-en",
"funnel-transformer/small",
"funnel-transformer/small-base",
"funnel-transformer/medium",
"funnel-transformer/medium-base",
"funnel-transformer/intermediate",
"funnel-transformer/intermediate-base",
"funnel-transformer/large",
"funnel-transformer/large-base",
"funnel-transformer/xlarge-base",
"funnel-transformer/xlarge",
"gpt2",
"gpt2-medium",
"gpt2-large",
"gpt2-xl",
"distilgpt2",
"EleutherAI/gpt-neo-1.3B",
"EleutherAI/gpt-j-6B",
"kssteven/ibert-roberta-base",
"allenai/led-base-16384",
"google/mobilebert-uncased",
"microsoft/mpnet-base",
"uw-madison/nystromformer-512",
"openai-gpt",
"google/reformer-crime-and-punishment",
"tau/splinter-base",
"tau/splinter-base-qass",
"tau/splinter-large",
"tau/splinter-large-qass",
"squeezebert/squeezebert-uncased",
"squeezebert/squeezebert-mnli",
"squeezebert/squeezebert-mnli-headless",
"transfo-xl-wt103",
"xlm-mlm-en-2048",
"xlm-mlm-ende-1024",
"xlm-mlm-enfr-1024",
"xlm-mlm-enro-1024",
"xlm-mlm-tlm-xnli15-1024",
"xlm-mlm-xnli15-1024",
"xlm-clm-enfr-1024",
"xlm-clm-ende-1024",
"xlm-mlm-17-1280",
"xlm-mlm-100-1280",
"xlm-roberta-base",
"xlm-roberta-large",
"xlm-roberta-large-finetuned-conll02-dutch",
"xlm-roberta-large-finetuned-conll02-spanish",
"xlm-roberta-large-finetuned-conll03-english",
"xlm-roberta-large-finetuned-conll03-german",
"xlnet-base-cased",
"xlnet-large-cased",
"uw-madison/yoso-4096",
]
full_list.sort()
return full_list