logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

373 lines
15 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy
import os
import torch
from pathlib import Path
from transformers import AutoTokenizer, AutoModel
from towhee.operator import NNOperator
from towhee import register
import warnings
warnings.filterwarnings('ignore')
@register(output_schema=['vec'])
class AutoTransformers(NNOperator):
"""
NLP embedding operator that uses the pretrained transformers model gathered by huggingface.
Args:
model_name (`str`):
Which model to use for the embeddings.
"""
def __init__(self, model_name: str = "bert-base-uncased", device=None) -> None:
super().__init__()
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.device = device
self.model_name = model_name
try:
self.model = AutoModel.from_pretrained(model_name).to(self.device)
self.model.eval()
except Exception as e:
model_list = self.supported_model_names()
if model_name not in model_list:
log.error(f"Invalid model name: {model_name}. Supported model names: {model_list}")
else:
log.error(f"Fail to load model by name: {self.model_name}")
raise e
try:
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
except Exception as e:
log.error(f'Fail to load tokenizer by name: {self.model_name}')
raise e
def __call__(self, txt: str) -> numpy.ndarray:
try:
inputs = self.tokenizer(txt, return_tensors="pt").to(self.device)
except Exception as e:
log.error(f'Invalid input for the tokenizer: {self.model_name}')
raise e
try:
outs = self.model(**inputs)
except Exception as e:
log.error(f'Invalid input for the model: {self.model_name}')
raise e
try:
features = outs['last_hidden_state'].squeeze(0)
except Exception as e:
log.error(f'Fail to extract features by model: {self.model_name}')
raise e
vec = features.cpu().detach().numpy()
return vec
def save_model(self, format: str = 'pytorch', path: str = 'default'):
if path == 'default':
path = str(Path(__file__).parent)
path = os.path.join(path, 'saved', format)
os.makedirs(path, exist_ok=True)
name = self.model_name.replace('/', '-')
path = os.path.join(path, name)
inputs = self.tokenizer('[CLS]', return_tensors='pt') # a dictionary
if format == 'pytorch':
path = path + '.pt'
torch.save(self.model, path)
elif format == 'torchscript':
path = path + '.pt'
inputs = list(inputs.values())
try:
try:
jit_model = torch.jit.script(self.model)
except Exception:
jit_model = torch.jit.trace(self.model, inputs, strict=False)
torch.jit.save(jit_model, path)
except Exception as e:
log.error(f'Fail to save as torchscript: {e}.')
raise RuntimeError(f'Fail to save as torchscript: {e}.')
elif format == 'onnx':
path = path + '.onnx'
try:
torch.onnx.export(self.model,
tuple(inputs.values()),
path,
input_names=list(inputs.keys()),
output_names=["last_hidden_state"],
dynamic_axes={
"input_ids": {0: "batch_size", 1: "input_length"},
"token_type_ids": {0: "batch_size", 1: "input_length"},
"attention_mask": {0: "batch_size", 1: "input_length"},
"last_hidden_state": {0: "batch_size"},
},
opset_version=13,
do_constant_folding=True,
enable_onnx_checker=True,
)
except Exception as e:
print(e, '\nTrying with 2 outputs...')
torch.onnx.export(self.model,
tuple(inputs.values()),
path,
input_names=["input_ids", "token_type_ids", "attention_mask"], # list(inputs.keys())
output_names=["last_hidden_state", "pooler_output"],
opset_version=13,
dynamic_axes={
"input_ids": {0: "batch_size", 1: "input_length"},
"token_type_ids": {0: "batch_size", 1: "input_length"},
"attention_mask": {0: "batch_size", 1: "input_length"},
"last_hidden_state": {0: "batch_size"},
"pooler_outputs": {0: "batch_size"}
})
# todo: elif format == 'tensorrt':
else:
log.error(f'Unsupported format "{format}".')
@staticmethod
def supported_model_names(format: str = None):
full_list = [
"bert-large-uncased",
"bert-base-cased",
"bert-large-cased",
"bert-base-multilingual-uncased",
"bert-base-multilingual-cased",
"bert-base-chinese",
"bert-base-german-cased",
"bert-large-uncased-whole-word-masking",
"bert-large-cased-whole-word-masking",
"bert-large-uncased-whole-word-masking-finetuned-squad",
"bert-large-cased-whole-word-masking-finetuned-squad",
"bert-base-cased-finetuned-mrpc",
"bert-base-german-dbmdz-cased",
"bert-base-german-dbmdz-uncased",
"cl-tohoku/bert-base-japanese-whole-word-masking",
"cl-tohoku/bert-base-japanese-char",
"cl-tohoku/bert-base-japanese-char-whole-word-masking",
"TurkuNLP/bert-base-finnish-cased-v1",
"TurkuNLP/bert-base-finnish-uncased-v1",
"wietsedv/bert-base-dutch-cased",
"google/bigbird-roberta-base",
"google/bigbird-roberta-large",
"google/bigbird-base-trivia-itc",
"albert-base-v1",
"albert-large-v1",
"albert-xlarge-v1",
"albert-xxlarge-v1",
"albert-base-v2",
"albert-large-v2",
"albert-xlarge-v2",
"albert-xxlarge-v2",
"facebook/bart-large",
"google/bert_for_seq_generation_L-24_bbc_encoder",
"google/bigbird-pegasus-large-arxiv",
"google/bigbird-pegasus-large-pubmed",
"google/bigbird-pegasus-large-bigpatent",
"google/canine-s",
"google/canine-c",
"YituTech/conv-bert-base",
"YituTech/conv-bert-medium-small",
"YituTech/conv-bert-small",
"ctrl",
"microsoft/deberta-base",
"microsoft/deberta-large",
"microsoft/deberta-xlarge",
"microsoft/deberta-base-mnli",
"microsoft/deberta-large-mnli",
"microsoft/deberta-xlarge-mnli",
"distilbert-base-uncased",
"distilbert-base-uncased-distilled-squad",
"distilbert-base-cased",
"distilbert-base-cased-distilled-squad",
"distilbert-base-german-cased",
"distilbert-base-multilingual-cased",
"distilbert-base-uncased-finetuned-sst-2-english",
"google/electra-small-generator",
"google/electra-base-generator",
"google/electra-large-generator",
"google/electra-small-discriminator",
"google/electra-base-discriminator",
"google/electra-large-discriminator",
"google/fnet-base",
"google/fnet-large",
"facebook/wmt19-ru-en",
"funnel-transformer/small",
"funnel-transformer/small-base",
"funnel-transformer/medium",
"funnel-transformer/medium-base",
"funnel-transformer/intermediate",
"funnel-transformer/intermediate-base",
"funnel-transformer/large",
"funnel-transformer/large-base",
"funnel-transformer/xlarge-base",
"funnel-transformer/xlarge",
"gpt2",
"gpt2-medium",
"gpt2-large",
"gpt2-xl",
"distilgpt2",
"EleutherAI/gpt-neo-1.3B",
"EleutherAI/gpt-j-6B",
"kssteven/ibert-roberta-base",
"allenai/led-base-16384",
"google/mobilebert-uncased",
"microsoft/mpnet-base",
"uw-madison/nystromformer-512",
"openai-gpt",
"google/reformer-crime-and-punishment",
"tau/splinter-base",
"tau/splinter-base-qass",
"tau/splinter-large",
"tau/splinter-large-qass",
"squeezebert/squeezebert-uncased",
"squeezebert/squeezebert-mnli",
"squeezebert/squeezebert-mnli-headless",
"transfo-xl-wt103",
"xlm-mlm-en-2048",
"xlm-mlm-ende-1024",
"xlm-mlm-enfr-1024",
"xlm-mlm-enro-1024",
"xlm-mlm-tlm-xnli15-1024",
"xlm-mlm-xnli15-1024",
"xlm-clm-enfr-1024",
"xlm-clm-ende-1024",
"xlm-mlm-17-1280",
"xlm-mlm-100-1280",
"xlm-roberta-base",
"xlm-roberta-large",
"xlm-roberta-large-finetuned-conll02-dutch",
"xlm-roberta-large-finetuned-conll02-spanish",
"xlm-roberta-large-finetuned-conll03-english",
"xlm-roberta-large-finetuned-conll03-german",
"xlnet-base-cased",
"xlnet-large-cased",
"uw-madison/yoso-4096",
"microsoft/deberta-v2-xlarge",
"microsoft/deberta-v2-xxlarge",
"microsoft/deberta-v2-xlarge-mnli",
"microsoft/deberta-v2-xxlarge-mnli",
"flaubert/flaubert_small_cased",
"flaubert/flaubert_base_uncased",
"flaubert/flaubert_base_cased",
"flaubert/flaubert_large_cased",
"camembert-base",
"Musixmatch/umberto-commoncrawl-cased-v1",
"Musixmatch/umberto-wikipedia-uncased-v1",
]
full_list.sort()
if format is None:
model_list = full_list
elif format == 'pytorch':
to_remove = []
assert set(to_remove).issubset(set(full_list))
model_list = list(set(full_list) - set(to_remove))
elif format == 'torchscript':
to_remove = [
'EleutherAI/gpt-j-6B',
'EleutherAI/gpt-neo-1.3B',
'allenai/led-base-16384',
'ctrl',
'distilgpt2',
'facebook/bart-large',
'google/bigbird-pegasus-large-arxiv',
'google/bigbird-pegasus-large-bigpatent',
'google/bigbird-pegasus-large-pubmed',
'google/canine-c',
'google/canine-s',
'google/reformer-crime-and-punishment',
'gpt2',
'gpt2-large',
'gpt2-medium',
'gpt2-xl',
'microsoft/deberta-base',
'microsoft/deberta-base-mnli',
'microsoft/deberta-large',
'microsoft/deberta-large-mnli',
'microsoft/deberta-xlarge',
'microsoft/deberta-xlarge-mnli',
'openai-gpt',
'transfo-xl-wt103',
'uw-madison/yoso-4096',
'xlm-clm-ende-1024',
'xlm-clm-enfr-1024',
'xlm-mlm-100-1280',
'xlm-mlm-17-1280',
'xlm-mlm-en-2048',
'xlm-mlm-ende-1024',
'xlm-mlm-enfr-1024',
'xlm-mlm-enro-1024',
'xlm-mlm-tlm-xnli15-1024',
'xlm-mlm-xnli15-1024',
'xlnet-base-cased',
'xlnet-large-cased',
'microsoft/deberta-v2-xlarge',
'microsoft/deberta-v2-xxlarge',
'microsoft/deberta-v2-xlarge-mnli',
'microsoft/deberta-v2-xxlarge-mnli',
'flaubert/flaubert_small_cased',
'flaubert/flaubert_base_uncased',
'flaubert/flaubert_base_cased',
'flaubert/flaubert_large_cased'
]
assert set(to_remove).issubset(set(full_list))
model_list = list(set(full_list) - set(to_remove))
elif format == 'onnx':
to_remove = [
'allenai/led-base-16384',
'ctrl',
'distilgpt2',
'EleutherAI/gpt-j-6B',
'EleutherAI/gpt-neo-1.3B',
'funnel-transformer/large',
'funnel-transformer/medium',
'funnel-transformer/small',
'funnel-transformer/xlarge',
'google/bigbird-pegasus-large-arxiv',
'google/bigbird-pegasus-large-bigpatent',
'google/bigbird-pegasus-large-pubmed',
'google/fnet-base',
'google/fnet-large',
'google/reformer-crime-and-punishment',
'gpt2',
'gpt2-large',
'gpt2-medium',
'gpt2-xl',
'microsoft/deberta-v2-xlarge',
'microsoft/deberta-v2-xlarge-mnli',
'microsoft/deberta-v2-xxlarge',
'microsoft/deberta-v2-xxlarge-mnli',
'microsoft/deberta-xlarge',
'microsoft/deberta-xlarge-mnli',
'openai-gpt',
'transfo-xl-wt103',
'uw-madison/yoso-4096',
'xlm-mlm-100-1280',
'xlm-mlm-17-1280',
'xlm-mlm-en-2048',
'xlm-roberta-large',
'xlm-roberta-large-finetuned-conll02-dutch',
'xlm-roberta-large-finetuned-conll02-spanish',
'xlm-roberta-large-finetuned-conll03-english',
'xlm-roberta-large-finetuned-conll03-german',
'xlnet-base-cased',
'xlnet-large-cased'
]
assert set(to_remove).issubset(set(full_list))
model_list = list(set(full_list) - set(to_remove))
# todo: elif format == 'tensorrt':
else:
log.error(f'Invalid format "{format}". Currently supported formats: "pytorch", "torchscript".')
return model_list