logo
Browse Source

Update readme

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
main
Jael Gu 3 years ago
parent
commit
8f13f68398
  1. 29
      README.md

29
README.md

@ -1,6 +1,6 @@
# Text Embedding with Transformers
*author: Jael Gu*
*author: [Jael Gu](https://github.com/jaelgu)*
<br />
@ -15,7 +15,7 @@ This operator is implemented with pretrained models from [Huggingface Transforme
## Code Example
Use the pretrained model 'distilbert-base-cased'
to generate a text embedding for the sentence "Hello, world.".
to generate a text embedding for the sentence "Hello, world.".
*Write the pipeline*:
@ -38,10 +38,10 @@ Create the operator via the following factory method
***model_name***: *str*
The model name in string.
The model name in string.
The default model name is "bert-base-uncased".
Supported model names:
Supported model names:
<details><summary>Albert</summary>
@ -59,7 +59,7 @@ Supported model names:
- facebook/bart-large
</details>
<details><summary>Bert</summary>
- bert-base-cased
@ -82,9 +82,9 @@ Supported model names:
- TurkuNLP/bert-base-finnish-uncased-v1
- wietsedv/bert-base-dutch-cased
</details>
<details><summary>BertGeneration</summary>
- google/bert_for_seq_generation_L-24_bbc_encoder
</details>
@ -101,7 +101,7 @@ Supported model names:
- google/bigbird-pegasus-large-pubmed
- google/bigbird-pegasus-large-bigpatent
</details>
<details><summary>CamemBert</summary>
- camembert-base
@ -110,11 +110,11 @@ Supported model names:
</details>
<details><summary>Canine</summary>
- google/canine-s
- google/canine-c
</details>
<details><summary>Convbert</summary>
- YituTech/conv-bert-base
@ -229,7 +229,7 @@ Supported model names:
- uw-madison/nystromformer-512
</details>
<details><summary>Reformer</summary>
- google/reformer-crime-and-punishment
@ -281,7 +281,7 @@ Supported model names:
<details><summary>XLNet</summary>
- xlnet-base-cased
- xlnet-base-cased
- xlnet-large-cased
</details>
@ -303,12 +303,11 @@ and then return text embedding in ndarray.
***text***: *str*
The text in string.
The text in string.
**Returns**:
*numpy.ndarray*
The text embedding extracted by model.
​ The text embedding extracted by model.

Loading…
Cancel
Save