diff --git a/README.md b/README.md
index 173a673..57f2b7a 100644
--- a/README.md
+++ b/README.md
@@ -7,7 +7,7 @@
## Description
A text embedding operator takes a sentence, paragraph, or document in string as an input
-and output an embedding vector in ndarray which captures the input's core semantic elements.
+and outputs token embeddings which captures the input's core semantic elements.
This operator is implemented with pre-trained models from [Huggingface Transformers](https://huggingface.co/docs/transformers).
@@ -329,18 +329,12 @@ If None, the operator will use default tokenizer by `model_name` from Huggingfac
-***return_sentence_emb***: *bool*
-
-The flag to output a sentence embedding for each text, defaults to True.
-If False, the operator returns token embeddings for each text.
-
-
## Interface
The operator takes a piece of text in string as input.
It loads tokenizer and pre-trained model using model name.
-and then return text embedding in ndarray.
+and then return text embedding(s) in ndarray.
***\_\_call\_\_(txt)***
@@ -349,8 +343,8 @@ and then return text embedding in ndarray.
***data***: *Union[str, list]*
The text in string or a list of texts.
-If data is string, the operator returns embedding(s) in ndarray.
-If data is a list, the operator returns embedding(s) in a list.
+If data is string, the operator returns token embedding(s) in ndarray.
+If data is a list, the operator returns token embedding(s) in a list.
**Returns**:
diff --git a/result.png b/result.png
index bbfc7ec..4d87bb5 100644
Binary files a/result.png and b/result.png differ