# Text Embedding with Transformers *author: [Jael Gu](https://github.com/jaelgu)*
## Description A text embedding operator takes a sentence, paragraph, or document in string as an input and output an embedding vector in ndarray which captures the input's core semantic elements. This operator is implemented with pre-trained models from [Huggingface Transformers](https://huggingface.co/docs/transformers).
## Code Example Use the pre-trained model 'distilbert-base-cased' to generate a text embedding for the sentence "Hello, world.". *Write a same pipeline with explicit inputs/outputs name specifications:* - **option 1 (towhee>=0.9.0):** ```python from towhee.dc2 import pipe, ops, DataCollection p = ( pipe.input('text') .map('text', 'vec', ops.text_embedding.transformers(model_name='distilbert-base-cased')) .output('text', 'vec') ) DataCollection(p('Hello, world.')).show() ``` - **option 2:** ```python import towhee ( towhee.dc['text'](["Hello, world."]) .text_embedding.transformers['text', 'vec'](model_name="distilbert-base-cased") .show() ) ```
## Factory Constructor Create the operator via the following factory method: ***text_embedding.transformers(model_name=None)*** **Parameters:** ***model_name***: *str* The model name in string, defaults to None. If None, the operator will be initialized without specified model. Supported model names:
Albert - albert-base-v1 - albert-large-v1 - albert-xlarge-v1 - albert-xxlarge-v1 - albert-base-v2 - albert-large-v2 - albert-xlarge-v2 - albert-xxlarge-v2
Bart - facebook/bart-large
Bert - bert-base-cased - bert-base-uncased - bert-large-cased - bert-large-uncased - bert-base-multilingual-uncased - bert-base-multilingual-cased - bert-base-chinese - bert-base-german-cased - bert-large-uncased-whole-word-masking - bert-large-cased-whole-word-masking - bert-large-uncased-whole-word-masking-finetuned-squad - bert-large-cased-whole-word-masking-finetuned-squad - bert-base-cased-finetuned-mrpc - bert-base-german-dbmdz-cased - bert-base-german-dbmdz-uncased - cl-tohoku/bert-base-japanese-whole-word-masking - cl-tohoku/bert-base-japanese-char - cl-tohoku/bert-base-japanese-char-whole-word-masking - TurkuNLP/bert-base-finnish-cased-v1 - TurkuNLP/bert-base-finnish-uncased-v1 - wietsedv/bert-base-dutch-cased
BertGeneration - google/bert_for_seq_generation_L-24_bbc_encoder
BigBird - google/bigbird-roberta-base - google/bigbird-roberta-large - google/bigbird-base-trivia-itc
BigBirdPegasus - google/bigbird-pegasus-large-arxiv - google/bigbird-pegasus-large-pubmed - google/bigbird-pegasus-large-bigpatent
CamemBert - camembert-base - Musixmatch/umberto-commoncrawl-cased-v1 - Musixmatch/umberto-wikipedia-uncased-v1
Canine - google/canine-s - google/canine-c
Convbert - YituTech/conv-bert-base - YituTech/conv-bert-medium-small - YituTech/conv-bert-small
CTRL - ctrl
DeBERTa - microsoft/deberta-base - microsoft/deberta-large - microsoft/deberta-xlarge - microsoft/deberta-base-mnli - microsoft/deberta-large-mnli - microsoft/deberta-xlarge-mnli - microsoft/deberta-v2-xlarge - microsoft/deberta-v2-xxlarge - microsoft/deberta-v2-xlarge-mnli - microsoft/deberta-v2-xxlarge-mnli
DistilBert - distilbert-base-uncased - distilbert-base-uncased-distilled-squad - distilbert-base-cased - distilbert-base-cased-distilled-squad - distilbert-base-german-cased - distilbert-base-multilingual-cased - distilbert-base-uncased-finetuned-sst-2-english
Electral - google/electra-small-generator - google/electra-base-generator - google/electra-large-generator - google/electra-small-discriminator - google/electra-base-discriminator - google/electra-large-discriminator
Flaubert - flaubert/flaubert_small_cased - flaubert/flaubert_base_uncased - flaubert/flaubert_base_cased - flaubert/flaubert_large_cased
FNet - google/fnet-base - google/fnet-large
FSMT - facebook/wmt19-ru-en
Funnel - funnel-transformer/small - funnel-transformer/small-base - funnel-transformer/medium - funnel-transformer/medium-base - funnel-transformer/intermediate - funnel-transformer/intermediate-base - funnel-transformer/large - funnel-transformer/large-base - funnel-transformer/xlarge-base - funnel-transformer/xlarge
GPT - openai-gpt - gpt2 - gpt2-medium - gpt2-large - gpt2-xl - distilgpt2 - EleutherAI/gpt-neo-1.3B - EleutherAI/gpt-j-6B
I-Bert - kssteven/ibert-roberta-base
LED - allenai/led-base-16384
MobileBert - google/mobilebert-uncased
MPNet - microsoft/mpnet-base
Nystromformer - uw-madison/nystromformer-512
Reformer - google/reformer-crime-and-punishment
Splinter - tau/splinter-base - tau/splinter-base-qass - tau/splinter-large - tau/splinter-large-qass
SqueezeBert - squeezebert/squeezebert-uncased - squeezebert/squeezebert-mnli - squeezebert/squeezebert-mnli-headless
TransfoXL - transfo-xl-wt103
XLM - xlm-mlm-en-2048 - xlm-mlm-ende-1024 - xlm-mlm-enfr-1024 - xlm-mlm-enro-1024 - xlm-mlm-tlm-xnli15-1024 - xlm-mlm-xnli15-1024 - xlm-clm-enfr-1024 - xlm-clm-ende-1024 - xlm-mlm-17-1280 - xlm-mlm-100-1280
XLMRoberta - xlm-roberta-base - xlm-roberta-large - xlm-roberta-large-finetuned-conll02-dutch - xlm-roberta-large-finetuned-conll02-spanish - xlm-roberta-large-finetuned-conll03-english - xlm-roberta-large-finetuned-conll03-german
XLNet - xlnet-base-cased - xlnet-large-cased
Yoso - uw-madison/yoso-4096

***checkpoint_path***: *str* The path to local checkpoint, defaults to None. If None, the operator will download and load pretrained model by `model_name` from Huggingface transformers.
***tokenizer***: *object* The method to tokenize input text, defaults to None. If None, the operator will use default tokenizer by `model_name` from Huggingface transformers.
## Interface The operator takes a piece of text in string as input. It loads tokenizer and pre-trained model using model name. and then return text embedding in ndarray. ***\_\_call\_\_(txt)*** **Parameters:** ***txt***: *str* ​ The text in string. **Returns**: *numpy.ndarray* ​ The text embedding extracted by model.
***save_model(format='pytorch', path='default')*** Save model to local with specified format. **Parameters:** ***format***: *str* ​ The format of saved model, defaults to 'pytorch'. ***path***: *str* ​ The path where model is saved to. By default, it will save model to the operator directory. ```python from towhee import ops op = ops.text_embedding.transformers(model_name='distilbert-base-cased').get_op() op.save_model('onnx', 'test.onnx') ``` PosixPath('/Home/.towhee/operators/text-embedding/transformers/main/test.onnx')
***supported_model_names(format=None)*** Get a list of all supported model names or supported model names for specified model format. **Parameters:** ***format***: *str* ​ The model format such as 'pytorch', 'torchscript'. ```python from towhee import ops op = ops.text_embedding.transformers().get_op() full_list = op.supported_model_names() onnx_list = op.supported_model_names(format='onnx') print(f'Onnx-support/Total Models: {len(onnx_list)}/{len(full_list)}') ``` 2022-12-13 16:25:15,916 - 140704500614336 - auto_transformers.py-auto_transformers:68 - WARNING: The operator is initialized without specified model. Onnx-support/Total Models: 111/126 ## Fine-tune ### Get start We have prepared some most typical use of [finetune examples](https://github.com/towhee-io/examples/tree/main/fine_tune/6_train_language_modeling_tasks). Simply speaking, you only need to construct an op instance and pass in some configurations to train the specified task. ```python import towhee bert_op = towhee.ops.text_embedding.transformers(model_name='bert-base-uncased').get_op() data_args = { 'dataset_name': 'wikitext', 'dataset_config_name': 'wikitext-2-raw-v1', } training_args = { 'num_train_epochs': 3, # you can add epoch number to get a better metric. 'per_device_train_batch_size': 8, 'per_device_eval_batch_size': 8, 'do_train': True, 'do_eval': True, 'output_dir': './tmp/test-mlm', 'overwrite_output_dir': True } bert_op.train(task='mlm', data_args=data_args, training_args=training_args) ``` For more infos, refer to the [examples](https://github.com/towhee-io/examples/tree/main/fine_tune/6_train_language_modeling_tasks). ### Dive deep and customize your training You can change the [training script](https://towhee.io/text-embedding/transformers/src/branch/main/train_clm_with_hf_trainer.py) in your customer way. Or your can refer to the original [hugging face transformers training examples](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling).