# Text Embedding with Transformers
*author: [Jael Gu](https://github.com/jaelgu)*
## Description
A text embedding operator takes a sentence, paragraph, or document in string as an input
and output an embedding vector in ndarray which captures the input's core semantic elements.
This operator is implemented with pre-trained models from [Huggingface Transformers](https://huggingface.co/docs/transformers).
## Code Example
Use the pre-trained model 'distilbert-base-cased'
to generate a text embedding for the sentence "Hello, world.".
*Write a same pipeline with explicit inputs/outputs name specifications:*
- **option 1 (towhee>=0.9.0):**
```python
from towhee.dc2 import pipe, ops, DataCollection
p = (
pipe.input('text')
.map('text', 'vec', ops.text_embedding.transformers(model_name='distilbert-base-cased'))
.output('text', 'vec')
)
DataCollection(p('Hello, world.')).show()
```
- **option 2:**
```python
import towhee
(
towhee.dc['text'](["Hello, world."])
.text_embedding.transformers['text', 'vec'](model_name="distilbert-base-cased")
.show()
)
```
## Factory Constructor
Create the operator via the following factory method:
***text_embedding.transformers(model_name=None)***
**Parameters:**
***model_name***: *str*
The model name in string, defaults to None.
If None, the operator will be initialized without specified model.
Supported model names:
Albert
- albert-base-v1
- albert-large-v1
- albert-xlarge-v1
- albert-xxlarge-v1
- albert-base-v2
- albert-large-v2
- albert-xlarge-v2
- albert-xxlarge-v2
Bart
- facebook/bart-large
Bert
- bert-base-cased
- bert-base-uncased
- bert-large-cased
- bert-large-uncased
- bert-base-multilingual-uncased
- bert-base-multilingual-cased
- bert-base-chinese
- bert-base-german-cased
- bert-large-uncased-whole-word-masking
- bert-large-cased-whole-word-masking
- bert-large-uncased-whole-word-masking-finetuned-squad
- bert-large-cased-whole-word-masking-finetuned-squad
- bert-base-cased-finetuned-mrpc
- bert-base-german-dbmdz-cased
- bert-base-german-dbmdz-uncased
- cl-tohoku/bert-base-japanese-whole-word-masking
- cl-tohoku/bert-base-japanese-char
- cl-tohoku/bert-base-japanese-char-whole-word-masking
- TurkuNLP/bert-base-finnish-cased-v1
- TurkuNLP/bert-base-finnish-uncased-v1
- wietsedv/bert-base-dutch-cased
BertGeneration
- google/bert_for_seq_generation_L-24_bbc_encoder
BigBird
- google/bigbird-roberta-base
- google/bigbird-roberta-large
- google/bigbird-base-trivia-itc
BigBirdPegasus
- google/bigbird-pegasus-large-arxiv
- google/bigbird-pegasus-large-pubmed
- google/bigbird-pegasus-large-bigpatent
CamemBert
- camembert-base
- Musixmatch/umberto-commoncrawl-cased-v1
- Musixmatch/umberto-wikipedia-uncased-v1
Canine
- google/canine-s
- google/canine-c
Convbert
- YituTech/conv-bert-base
- YituTech/conv-bert-medium-small
- YituTech/conv-bert-small
CTRL
- ctrl
DeBERTa
- microsoft/deberta-base
- microsoft/deberta-large
- microsoft/deberta-xlarge
- microsoft/deberta-base-mnli
- microsoft/deberta-large-mnli
- microsoft/deberta-xlarge-mnli
- microsoft/deberta-v2-xlarge
- microsoft/deberta-v2-xxlarge
- microsoft/deberta-v2-xlarge-mnli
- microsoft/deberta-v2-xxlarge-mnli
DistilBert
- distilbert-base-uncased
- distilbert-base-uncased-distilled-squad
- distilbert-base-cased
- distilbert-base-cased-distilled-squad
- distilbert-base-german-cased
- distilbert-base-multilingual-cased
- distilbert-base-uncased-finetuned-sst-2-english
Electral
- google/electra-small-generator
- google/electra-base-generator
- google/electra-large-generator
- google/electra-small-discriminator
- google/electra-base-discriminator
- google/electra-large-discriminator
Flaubert
- flaubert/flaubert_small_cased
- flaubert/flaubert_base_uncased
- flaubert/flaubert_base_cased
- flaubert/flaubert_large_cased
FNet
- google/fnet-base
- google/fnet-large
FSMT
- facebook/wmt19-ru-en
Funnel
- funnel-transformer/small
- funnel-transformer/small-base
- funnel-transformer/medium
- funnel-transformer/medium-base
- funnel-transformer/intermediate
- funnel-transformer/intermediate-base
- funnel-transformer/large
- funnel-transformer/large-base
- funnel-transformer/xlarge-base
- funnel-transformer/xlarge
GPT
- openai-gpt
- gpt2
- gpt2-medium
- gpt2-large
- gpt2-xl
- distilgpt2
- EleutherAI/gpt-neo-1.3B
- EleutherAI/gpt-j-6B
I-Bert
- kssteven/ibert-roberta-base
LED
- allenai/led-base-16384
MobileBert
- google/mobilebert-uncased
MPNet
- microsoft/mpnet-base
Nystromformer
- uw-madison/nystromformer-512
Reformer
- google/reformer-crime-and-punishment
Splinter
- tau/splinter-base
- tau/splinter-base-qass
- tau/splinter-large
- tau/splinter-large-qass
SqueezeBert
- squeezebert/squeezebert-uncased
- squeezebert/squeezebert-mnli
- squeezebert/squeezebert-mnli-headless
TransfoXL
- transfo-xl-wt103
XLM
- xlm-mlm-en-2048
- xlm-mlm-ende-1024
- xlm-mlm-enfr-1024
- xlm-mlm-enro-1024
- xlm-mlm-tlm-xnli15-1024
- xlm-mlm-xnli15-1024
- xlm-clm-enfr-1024
- xlm-clm-ende-1024
- xlm-mlm-17-1280
- xlm-mlm-100-1280
XLMRoberta
- xlm-roberta-base
- xlm-roberta-large
- xlm-roberta-large-finetuned-conll02-dutch
- xlm-roberta-large-finetuned-conll02-spanish
- xlm-roberta-large-finetuned-conll03-english
- xlm-roberta-large-finetuned-conll03-german
XLNet
- xlnet-base-cased
- xlnet-large-cased
Yoso
- uw-madison/yoso-4096
***checkpoint_path***: *str*
The path to local checkpoint, defaults to None.
If None, the operator will download and load pretrained model by `model_name` from Huggingface transformers.
***tokenizer***: *object*
The method to tokenize input text, defaults to None.
If None, the operator will use default tokenizer by `model_name` from Huggingface transformers.
***return_sentence_emb***: *bool*
The flag to output a sentence embedding for each text, defaults to True.
If False, the operator returns token embeddings for each text.
## Interface
The operator takes a piece of text in string as input.
It loads tokenizer and pre-trained model using model name.
and then return text embedding in ndarray.
***\_\_call\_\_(txt)***
**Parameters:**
***data***: *Union[str, list]*
The text in string or a list of texts.
If data is string, the operator returns embedding(s) in ndarray.
If data is a list, the operator returns embedding(s) in a list.
***save_model(format='pytorch', path='default')***
Save model to local with specified format.
**Parameters:**
***format***: *str*
The format of saved model, defaults to 'pytorch'.
***path***: *str*
The path where model is saved to. By default, it will save model to the operator directory.
```python
from towhee import ops
op = ops.text_embedding.transformers(model_name='distilbert-base-cased').get_op()
op.save_model('onnx', 'test.onnx')
```
PosixPath('/Home/.towhee/operators/text-embedding/transformers/main/test.onnx')
***supported_model_names(format=None)***
Get a list of all supported model names or supported model names for specified model format.
**Parameters:**
***format***: *str*
The model format such as 'pytorch', 'torchscript'.
```python
from towhee import ops
op = ops.text_embedding.transformers().get_op()
full_list = op.supported_model_names()
onnx_list = op.supported_model_names(format='onnx')
print(f'Onnx-support/Total Models: {len(onnx_list)}/{len(full_list)}')
```
2022-12-13 16:25:15,916 - 140704500614336 - auto_transformers.py-auto_transformers:68 - WARNING: The operator is initialized without specified model.
Onnx-support/Total Models: 111/126
**Returns**:
*numpy.ndarray or list*
The text embedding (or token embeddings) extracted by model.
## Fine-tune
### Requirement
If you want to train this operator, besides dependency in requirements.txt, you need install these dependencies.
```python
! python -m pip install datasets evaluate scikit-learn
```
### Get start
We have prepared some most typical use of [finetune examples](https://github.com/towhee-io/examples/tree/main/fine_tune/6_train_language_modeling_tasks).
Simply speaking, you only need to construct an op instance and pass in some configurations to train the specified task.
```python
import towhee
bert_op = towhee.ops.text_embedding.transformers(model_name='bert-base-uncased').get_op()
data_args = {
'dataset_name': 'wikitext',
'dataset_config_name': 'wikitext-2-raw-v1',
}
training_args = {
'num_train_epochs': 3, # you can add epoch number to get a better metric.
'per_device_train_batch_size': 8,
'per_device_eval_batch_size': 8,
'do_train': True,
'do_eval': True,
'output_dir': './tmp/test-mlm',
'overwrite_output_dir': True
}
bert_op.train(task='mlm', data_args=data_args, training_args=training_args)
```
For more infos, refer to the [examples](https://github.com/towhee-io/examples/tree/main/fine_tune/6_train_language_modeling_tasks).
### Dive deep and customize your training
You can change the [training script](https://towhee.io/text-embedding/transformers/src/branch/main/train_clm_with_hf_trainer.py) in your customer way.
Or your can refer to the original [hugging face transformers training examples](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling).