transformers
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
Updated 2 years ago
text-embedding
Evaluate with Similarity Search
Introduction
Build a classification system based on similarity search across embeddings.
The core ideas in run.py
:
- create a new Milvus collection each time
- extract embeddings using a pretrained model with model name specified by
--model
- specify inference method with
--format
in value ofpytorch
oronnx
- insert & search embeddings with Milvus collection without index
- measure performance with accuracy at top 1, 5, 10
- vote for the prediction from topk search results (most frequent one)
- compare final prediction with ground truth
- calculate percent of correct predictions over all queries
Example Usage
python evaluate.py --model MODEL_NAME --format pytorch
python evaluate.py --model MODEL_NAME --format onnx
Jael Gu
34b3d3f0b8
| 82 Commits | ||
---|---|---|---|
.. | |||
README.md |
807 B
|
2 years ago | |
run.py |
8.6 KiB
|
2 years ago | |
run.sh |
524 B
|
2 years ago |