logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

409 lines
16 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy
import os
import torch
import shutil
from pathlib import Path
from transformers import AutoTokenizer, AutoModel, AutoModelForMaskedLM, AutoModelForCausalLM
from towhee.operator import NNOperator
from towhee import register
from towhee.dc2 import accelerate
import warnings
import logging
from .train_mlm_with_hf_trainer import train_mlm_with_hf_trainer
from .train_clm_with_hf_trainer import train_clm_with_hf_trainer
log = logging.getLogger('run_op')
warnings.filterwarnings('ignore')
@accelerate
class Model:
def __init__(self, model_name, device, checkpoint_path):
try:
self.model = AutoModel.from_pretrained(model_name).to(device)
except Exception as e:
log.error(f"Fail to load model by name: {self.model_name}")
raise e
if checkpoint_path:
try:
state_dict = torch.load(checkpoint_path, map_location=device)
self.model.load_state_dict(state_dict)
except Exception as e:
log.error(f"Fail to load state dict from {checkpoint_path}: {e}")
self.model.eval()
def __call__(self, *args, **kwargs):
return self.model(*args, **kwargs)
@register(output_schema=['vec'])
class AutoTransformers(NNOperator):
"""
NLP embedding operator that uses the pretrained transformers model gathered by huggingface.
Args:
model_name (`str`):
The model name to load a pretrained model from transformers.
checkpoint_path (`str`):
The local checkpoint path.
tokenizer (`object`):
The tokenizer to tokenize input text as model inputs.
"""
def __init__(self,
model_name: str = None,
checkpoint_path: str = None,
tokenizer: object = None,
device: str = None,
):
super().__init__()
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.device = device
model_list = self.supported_model_names()
assert model_name in model_list, f"Invalid model name: {model_name}. Supported model names: {model_list}"
self.model_name = model_name
if self.model_name:
self.accelerate_model = Model(
model_name=self.model_name, device=self.device, checkpoint_path=checkpoint_path)
self.model = self.accelerate_model.model
self.configs = self.model.config
if tokenizer is None:
try:
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
except Exception as e:
log.error(f'Fail to load default tokenizer by name: {self.model_name}')
raise e
else:
self.tokenizer = tokenizer
else:
log.warning('The operator is initialized without specified model.')
pass
def __call__(self, txt: str) -> numpy.ndarray:
try:
inputs = self.tokenizer(txt, return_tensors="pt").to(self.device)
except Exception as e:
log.error(f'Invalid input for the tokenizer: {self.model_name}')
raise e
try:
outs = self.accelerate_model(**inputs)
except Exception as e:
log.error(f'Invalid input for the model: {self.model_name}')
raise e
try:
features = outs['last_hidden_state'].squeeze(0)
except Exception as e:
log.error(f'Fail to extract features by model: {self.model_name}')
raise e
vec = features.cpu().detach().numpy()
return vec
def save_model(self, format: str = 'pytorch', path: str = 'default'):
if path == 'default':
path = str(Path(__file__).parent)
path = os.path.join(path, 'saved', format)
os.makedirs(path, exist_ok=True)
name = self.model_name.replace('/', '-')
path = os.path.join(path, name)
dummy_input = '[CLS]'
inputs = self.tokenizer(dummy_input, return_tensors='pt') # a dictionary
if format == 'pytorch':
torch.save(self.model, path + '.pt')
elif format == 'torchscript':
inputs = list(inputs.values())
try:
try:
jit_model = torch.jit.script(self.model)
except Exception:
jit_model = torch.jit.trace(self.model, inputs, strict=False)
torch.jit.save(jit_model, path + '.pt')
except Exception as e:
log.error(f'Fail to save as torchscript: {e}.')
raise RuntimeError(f'Fail to save as torchscript: {e}.')
elif format == 'onnx':
from transformers.onnx.features import FeaturesManager
from transformers.onnx import export
model_kind, model_onnx_config = FeaturesManager.check_supported_model_or_raise(
self.model, feature='default')
onnx_config = model_onnx_config(self.configs)
if os.path.isdir(path):
shutil.rmtree(path)
onnx_inputs, onnx_outputs = export(
self.tokenizer,
self.model,
config=onnx_config,
opset=13,
output=Path(path+'.onnx')
)
# todo: elif format == 'tensorrt':
else:
log.error(f'Unsupported format "{format}".')
@staticmethod
def supported_model_names(format: str = None):
full_list = [
"bert-large-uncased",
"bert-base-cased",
"bert-base-uncased",
"bert-large-cased",
"bert-base-multilingual-uncased",
"bert-base-multilingual-cased",
"bert-base-chinese",
"bert-base-german-cased",
"bert-large-uncased-whole-word-masking",
"bert-large-cased-whole-word-masking",
"bert-large-uncased-whole-word-masking-finetuned-squad",
"bert-large-cased-whole-word-masking-finetuned-squad",
"bert-base-cased-finetuned-mrpc",
"bert-base-german-dbmdz-cased",
"bert-base-german-dbmdz-uncased",
"cl-tohoku/bert-base-japanese-whole-word-masking",
"cl-tohoku/bert-base-japanese-char",
"cl-tohoku/bert-base-japanese-char-whole-word-masking",
"TurkuNLP/bert-base-finnish-cased-v1",
"TurkuNLP/bert-base-finnish-uncased-v1",
"wietsedv/bert-base-dutch-cased",
"google/bigbird-roberta-base",
"google/bigbird-roberta-large",
"google/bigbird-base-trivia-itc",
"albert-base-v1",
"albert-large-v1",
"albert-xlarge-v1",
"albert-xxlarge-v1",
"albert-base-v2",
"albert-large-v2",
"albert-xlarge-v2",
"albert-xxlarge-v2",
"facebook/bart-large",
"google/bert_for_seq_generation_L-24_bbc_encoder",
"google/bigbird-pegasus-large-arxiv",
"google/bigbird-pegasus-large-pubmed",
"google/bigbird-pegasus-large-bigpatent",
"google/canine-s",
"google/canine-c",
"YituTech/conv-bert-base",
"YituTech/conv-bert-medium-small",
"YituTech/conv-bert-small",
"ctrl",
"microsoft/deberta-base",
"microsoft/deberta-large",
"microsoft/deberta-xlarge",
"microsoft/deberta-base-mnli",
"microsoft/deberta-large-mnli",
"microsoft/deberta-xlarge-mnli",
"distilbert-base-uncased",
"distilbert-base-uncased-distilled-squad",
"distilbert-base-cased",
"distilbert-base-cased-distilled-squad",
"distilbert-base-german-cased",
"distilbert-base-multilingual-cased",
"distilbert-base-uncased-finetuned-sst-2-english",
"google/electra-small-generator",
"google/electra-base-generator",
"google/electra-large-generator",
"google/electra-small-discriminator",
"google/electra-base-discriminator",
"google/electra-large-discriminator",
"google/fnet-base",
"google/fnet-large",
"facebook/wmt19-ru-en",
"funnel-transformer/small",
"funnel-transformer/small-base",
"funnel-transformer/medium",
"funnel-transformer/medium-base",
"funnel-transformer/intermediate",
"funnel-transformer/intermediate-base",
"funnel-transformer/large",
"funnel-transformer/large-base",
"funnel-transformer/xlarge-base",
"funnel-transformer/xlarge",
"gpt2",
"gpt2-medium",
"gpt2-large",
"gpt2-xl",
"distilgpt2",
"EleutherAI/gpt-neo-1.3B",
"EleutherAI/gpt-j-6B",
"kssteven/ibert-roberta-base",
"allenai/led-base-16384",
"google/mobilebert-uncased",
"microsoft/mpnet-base",
"uw-madison/nystromformer-512",
"openai-gpt",
"google/reformer-crime-and-punishment",
"tau/splinter-base",
"tau/splinter-base-qass",
"tau/splinter-large",
"tau/splinter-large-qass",
"squeezebert/squeezebert-uncased",
"squeezebert/squeezebert-mnli",
"squeezebert/squeezebert-mnli-headless",
"transfo-xl-wt103",
"xlm-mlm-en-2048",
"xlm-mlm-ende-1024",
"xlm-mlm-enfr-1024",
"xlm-mlm-enro-1024",
"xlm-mlm-tlm-xnli15-1024",
"xlm-mlm-xnli15-1024",
"xlm-clm-enfr-1024",
"xlm-clm-ende-1024",
"xlm-mlm-17-1280",
"xlm-mlm-100-1280",
"xlm-roberta-base",
"xlm-roberta-large",
"xlm-roberta-large-finetuned-conll02-dutch",
"xlm-roberta-large-finetuned-conll02-spanish",
"xlm-roberta-large-finetuned-conll03-english",
"xlm-roberta-large-finetuned-conll03-german",
"xlnet-base-cased",
"xlnet-large-cased",
"uw-madison/yoso-4096",
"microsoft/deberta-v2-xlarge",
"microsoft/deberta-v2-xxlarge",
"microsoft/deberta-v2-xlarge-mnli",
"microsoft/deberta-v2-xxlarge-mnli",
"flaubert/flaubert_small_cased",
"flaubert/flaubert_base_uncased",
"flaubert/flaubert_base_cased",
"flaubert/flaubert_large_cased",
"camembert-base",
"Musixmatch/umberto-commoncrawl-cased-v1",
"Musixmatch/umberto-wikipedia-uncased-v1",
]
full_list.sort()
if format is None:
model_list = full_list
elif format == 'pytorch':
to_remove = []
assert set(to_remove).issubset(set(full_list))
model_list = list(set(full_list) - set(to_remove))
elif format == 'torchscript':
to_remove = [
'EleutherAI/gpt-j-6B',
'EleutherAI/gpt-neo-1.3B',
'allenai/led-base-16384',
'ctrl',
'distilgpt2',
'facebook/bart-large',
'google/bigbird-pegasus-large-arxiv',
'google/bigbird-pegasus-large-bigpatent',
'google/bigbird-pegasus-large-pubmed',
'google/canine-c',
'google/canine-s',
'google/reformer-crime-and-punishment',
'gpt2',
'gpt2-large',
'gpt2-medium',
'gpt2-xl',
'microsoft/deberta-base',
'microsoft/deberta-base-mnli',
'microsoft/deberta-large',
'microsoft/deberta-large-mnli',
'microsoft/deberta-xlarge',
'microsoft/deberta-xlarge-mnli',
'openai-gpt',
'transfo-xl-wt103',
'uw-madison/yoso-4096',
'xlm-clm-ende-1024',
'xlm-clm-enfr-1024',
'xlm-mlm-100-1280',
'xlm-mlm-17-1280',
'xlm-mlm-en-2048',
'xlm-mlm-ende-1024',
'xlm-mlm-enfr-1024',
'xlm-mlm-enro-1024',
'xlm-mlm-tlm-xnli15-1024',
'xlm-mlm-xnli15-1024',
'xlnet-base-cased',
'xlnet-large-cased',
'microsoft/deberta-v2-xlarge',
'microsoft/deberta-v2-xxlarge',
'microsoft/deberta-v2-xlarge-mnli',
'microsoft/deberta-v2-xxlarge-mnli',
'flaubert/flaubert_small_cased',
'flaubert/flaubert_base_uncased',
'flaubert/flaubert_base_cased',
'flaubert/flaubert_large_cased'
]
assert set(to_remove).issubset(set(full_list))
model_list = list(set(full_list) - set(to_remove))
elif format == 'onnx':
to_remove = [
'ctrl',
'funnel-transformer/intermediate',
'funnel-transformer/large',
'funnel-transformer/medium',
'funnel-transformer/small',
'funnel-transformer/xlarge',
'google/canine-c',
'google/canine-s',
'google/fnet-base',
'google/fnet-large',
'google/reformer-crime-and-punishment',
'transfo-xl-wt103',
'uw-madison/yoso-4096',
'xlnet-base-cased',
'xlnet-large-cased'
]
assert set(to_remove).issubset(set(full_list))
model_list = list(set(full_list) - set(to_remove))
# todo: elif format == 'tensorrt':
else:
log.error(f'Invalid format "{format}". Currently supported formats: "pytorch", "torchscript".')
return model_list
def train(self, training_config=None,
train_dataset=None,
eval_dataset=None,
resume_checkpoint_path=None, **kwargs):
task = kwargs.pop('task', None)
data_args = kwargs.pop('data_args', None)
training_args = kwargs.pop('training_args', None)
prepare_model_weights_f = kwargs.pop('prepare_model_weights_f', None)
if task == 'mlm' or task is None:
model_with_head = AutoModelForMaskedLM.from_pretrained(self.model_name)
if prepare_model_weights_f is not None:
model_with_head = prepare_model_weights_f(self.model, model_with_head, **kwargs)
train_mlm_with_hf_trainer(
model_with_head,
self.tokenizer,
data_args,
training_args,
**kwargs
)
elif task == 'clm':
model_with_head = AutoModelForCausalLM.from_pretrained(self.model_name)
if prepare_model_weights_f is not None:
model_with_head = prepare_model_weights_f(self.model, model_with_head, **kwargs)
train_clm_with_hf_trainer(
model_with_head,
self.tokenizer,
data_args,
training_args,
**kwargs
)