transformers
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
807 B
807 B
Evaluate with Similarity Search
Introduction
Build a classification system based on similarity search across embeddings.
The core ideas in run.py
:
- create a new Milvus collection each time
- extract embeddings using a pretrained model with model name specified by
--model
- specify inference method with
--format
in value ofpytorch
oronnx
- insert & search embeddings with Milvus collection without index
- measure performance with accuracy at top 1, 5, 10
- vote for the prediction from topk search results (most frequent one)
- compare final prediction with ground truth
- calculate percent of correct predictions over all queries
Example Usage
python evaluate.py --model MODEL_NAME --format pytorch
python evaluate.py --model MODEL_NAME --format onnx
807 B
807 B
Evaluate with Similarity Search
Introduction
Build a classification system based on similarity search across embeddings.
The core ideas in run.py
:
- create a new Milvus collection each time
- extract embeddings using a pretrained model with model name specified by
--model
- specify inference method with
--format
in value ofpytorch
oronnx
- insert & search embeddings with Milvus collection without index
- measure performance with accuracy at top 1, 5, 10
- vote for the prediction from topk search results (most frequent one)
- compare final prediction with ground truth
- calculate percent of correct predictions over all queries
Example Usage
python evaluate.py --model MODEL_NAME --format pytorch
python evaluate.py --model MODEL_NAME --format onnx