This pipeline extracts features of a given audio file using a VGGish model implemented in Tensorflow. This is a supervised model pre-trained with [AudioSet](https://research.google.com/audioset/), which contains over 2 million sound clips.
## Interface
**Input Arguments:**
- filepath:
- the input audio
- supported types: `str` (path to the audio)
**Pipeline Output:**
The Operator returns a tuple `Tuple[('embs', numpy.ndarray)]` containing following fields:
> You can refer to [Getting Started with Towhee](https://towhee.io/) for more details. If you have any questions, you can [submit an issue to the towhee repository](https://github.com/towhee-io/towhee/issues).
This pipeline includes a main operator: [audio embedding](https://hub.towhee.io/towhee/audio-embedding-operator-template) (implemented as [towhee/tf-vggish-audioset](https://hub.towhee.io/towhee/tf-vggish-audioset)). The audio embedding operator encodes fixed-length clips of an audio data and finally output a set of vectors of the given audio.