diff --git a/README.md b/README.md index c84a342..07b1fbe 100644 --- a/README.md +++ b/README.md @@ -13,15 +13,18 @@ This pipeline extracts features of a given audio file using a VGGish model imple - audio_path: - the input audio in `.wav` - supported types: `str` (path to the audio) + - the audio should be as least 1 second **Pipeline Output:** -The Operator returns a tuple `Tuple[('embs', numpy.ndarray)]` containing following fields: +The Operator returns a list of named tuple `[NamedTuple('AudioOutput', [('vec', 'ndarray')])]` containing following fields: -- embs: +- each item in the output list represents for embedding(s) for an audio clip, which depends on `time-window` in [yaml](./audio_embedding_vggish.yaml). + +- vec: - embeddings of input audio - data type: numpy.ndarray - - shape: (num_clips,128) + - shape: (num_clips, 128) ## How to use @@ -39,9 +42,9 @@ $ pip3 install towhee >>> from towhee import pipeline >>> embedding_pipeline = pipeline('towhee/audio-embedding-vggish') ->>> embedding = embedding_pipeline('path/to/your/audio') +>>> embedding = embedding_pipeline('/path/to/your/audio') ``` ## How it works -This pipeline includes a main operator: [audio-embedding](https://towhee.io/operators?limit=30&page=1&filter=3%3Aaudio-embedding) (default: [towhee/torch-vggish](https://hub.towhee.io/towhee/torch-vggish)). The audio embedding operator encodes audio file and finally output a set of vectors of the given audio. +This pipeline includes a main operator type [audio-embedding](https://towhee.io/operators?limit=30&page=1&filter=3%3Aaudio-embedding) (default: [towhee/torch-vggish](https://hub.towhee.io/towhee/torch-vggish)). The pipeline first decodes the input audio file into audio frames and then combine frames depending on time-window configs. The audio-embedding operator takes combined frames as input and generate corresponding audio embeddings.