from bertviz.transformers_neuron_view import BertModel, BertConfig from transformers import BertTokenizer from typing import NamedTuple import numpy import torch from towhee.operator import Operator class TorchBert(Operator): """ Text to embedding using BERT """ def __init__(self, max_length: int = 256, framework: str = 'pytorch') -> None: super().__init__() config = BertConfig.from_pretrained("bert-base-cased", output_attentions=True, output_hidden_states=True, return_dict=True) self.tokenizer = BertTokenizer.from_pretrained("bert-base-cased") config.max_position_embeddings = max_length self.max_length = max_length model = BertModel(config) self.model = model.eval() def __call__(self, text: str) -> NamedTuple('Outputs', [('embs', numpy.ndarray)]): inputs = self.tokenizer(text, truncation=True, padding=True, max_length=self.max_length, return_tensors='pt') f1 = torch.index_select(self.model.embeddings.word_embeddings.weight, 0, inputs['input_ids'][0]) # words embeddings + torch.index_select(self.model.embeddings.position_embeddings.weight, 0, torch.tensor(range(inputs['input_ids'][0].size(0))).long()) # pos embeddings + torch.index_select(self.model.embeddings.token_type_embeddings.weight, 0, inputs['token_type_ids'][0]) # token embeddings # single example normalization ex1 = f1[0, :] ex1_mean = ex1.mean() ex1_std = (ex1 - ex1_mean).pow(2).mean() norm_embedding = ((ex1 - ex1_mean) / torch.sqrt(ex1_std + 1e-12)) norm_embedding_centered = self.model.embeddings.LayerNorm.weight * norm_embedding \ + self.model.embeddings.LayerNorm.bias Outputs = NamedTuple('Outputs', [('embs', numpy.ndarray)]) return Outputs(norm_embedding_centered.detach().numpy())