wxywb
3 years ago
2 changed files with 102 additions and 5 deletions
@ -1,2 +1,103 @@ |
|||||
# clip |
|
||||
|
# Image-Text Retrieval Embdding with CLIP |
||||
|
|
||||
|
*author: David Wang* |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Description |
||||
|
|
||||
|
This operator extracts features for image or text with [CLIP](https://arxiv.org/abs/2108.02927) which can genearte the embedding for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. This operator is an adaptation from [openai/CLIP](https://github.com/openai/CLIP). |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
## Code Example |
||||
|
|
||||
|
Load an image from path './dog.jpg' to generate an image embedding. |
||||
|
Read the text 'a dog' to generate an text embedding. |
||||
|
*Write the pipeline in simplified style*: |
||||
|
|
||||
|
```python |
||||
|
import towhee |
||||
|
|
||||
|
towhee.glob('./dog.jpg') \ |
||||
|
.image_decode.cv2() \ |
||||
|
.towhee.clip(name='ViT-B/32', modality='image') \ |
||||
|
.show() |
||||
|
|
||||
|
towhee.dc(["a dog"]) \ |
||||
|
.image_decode.cv2() \ |
||||
|
.towhee.clip(name='ViT-B/32', modality='text') \ |
||||
|
.show() |
||||
|
``` |
||||
|
<img src="https://towhee.io/image-embedding/dolg/raw/branch/main/result1.png" alt="result1" style="height:20px;"/> |
||||
|
|
||||
|
*Write a same pipeline with explicit inputs/outputs name specifications:* |
||||
|
|
||||
|
```python |
||||
|
import towhee |
||||
|
|
||||
|
towhee.glob['path']('./dog.jpg') \ |
||||
|
.image_decode.cv2['path', 'img']() \ |
||||
|
.towhee.clip['data', 'vec'](name='ViT-B/32', modality='image') \ |
||||
|
.select['data', 'vec']() \ |
||||
|
.show() |
||||
|
|
||||
|
towhee.dc(["a dog"]) \ |
||||
|
.select['img', 'vec']() \ |
||||
|
.towhee.clip['data', 'vec'](name='ViT-B/32', modality='image') \ |
||||
|
.select['data', 'vec']() \ |
||||
|
.show() |
||||
|
``` |
||||
|
<img src="https://towhee.io/image-embedding/dolg/raw/branch/main/result2.png" alt="result2" style="height:60px;"/> |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Factory Constructor |
||||
|
|
||||
|
Create the operator via the following factory method |
||||
|
|
||||
|
***clip(name, modality)*** |
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***name:*** *str* |
||||
|
|
||||
|
The model name of CLIP. |
||||
|
|
||||
|
***modality:*** *str* |
||||
|
|
||||
|
Which modality(*image* or *text*) is used to generate the embedding. |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Interface |
||||
|
|
||||
|
An image embedding operator takes a [towhee image](link/to/towhee/image/api/doc) as input. |
||||
|
It uses the pre-trained model specified by model name to generate an image embedding in ndarray. |
||||
|
|
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str* |
||||
|
|
||||
|
The data(image or text based on choosed modality) to generate the embedding. |
||||
|
|
||||
|
|
||||
|
|
||||
|
**Returns:** *numpy.ndarray* |
||||
|
|
||||
|
The data embedding extracted by model. |
||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
Loading…
Reference in new issue