# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. @register(output_schema=['vec']) import numpy import towhee import sys from pathlib import Path from torchvision import transforms from towhee.types.image_utils import to_pil from towhee.operator.base import NNOperator, OperatorFlag from towhee.types.arg import arg, to_image_color from towhee import register @register(output_schema=['vec']) class Clip(NNOperator): """ CLIP multi-modal embedding operator """ def __init__(self, modality: str): self._modality = modality def __call__(self, data): if self._modality == 'image' emb = self._inference_from_image(data) elif self._modality == 'text' emb = self._inference_from_text(data) else raise ValueError("modality[{}] not implemented.".format(self._modality)) def _inference_from_text(self, text): return text @arg(1, to_image_color('RGB')) def _inference_from_image(self, img): return img