# Image-Text Retrieval Embdding with CLIP *author: David Wang*
## Description This operator extracts features for image or text with [CLIP](https://arxiv.org/abs/2108.02927) which can genearte the embedding for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. This operator is an adaptation from [openai/CLIP](https://github.com/openai/CLIP).
## Code Example Load an image from path './dog.jpg' to generate an image embedding. Read the text 'a dog' to generate an text embedding. *Write the pipeline in simplified style*: ```python import towhee towhee.glob('./dog.jpg') \ .image_decode.cv2() \ .towhee.clip(name='ViT-B/32', modality='image') \ .show() towhee.dc(["a dog"]) \ .image_decode.cv2() \ .towhee.clip(name='ViT-B/32', modality='text') \ .show() ``` result1 *Write a same pipeline with explicit inputs/outputs name specifications:* ```python import towhee towhee.glob['path']('./dog.jpg') \ .image_decode.cv2['path', 'img']() \ .towhee.clip['data', 'vec'](name='ViT-B/32', modality='image') \ .select['data', 'vec']() \ .show() towhee.dc(["a dog"]) \ .select['img', 'vec']() \ .towhee.clip['data', 'vec'](name='ViT-B/32', modality='image') \ .select['data', 'vec']() \ .show() ``` result2
## Factory Constructor Create the operator via the following factory method ***clip(name, modality)*** **Parameters:** ​ ***name:*** *str* ​ The model name of CLIP. ​ ***modality:*** *str* ​ Which modality(*image* or *text*) is used to generate the embedding.
## Interface An image embedding operator takes a [towhee image](link/to/towhee/image/api/doc) as input. It uses the pre-trained model specified by model name to generate an image embedding in ndarray. **Parameters:** ​ ***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str* ​ The data(image or text based on choosed modality) to generate the embedding. **Returns:** *numpy.ndarray* ​ The data embedding extracted by model.