# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy import towhee import sys from pathlib import Path import torch from torchvision import transforms from towhee.types.image_utils import to_pil from towhee.operator.base import NNOperator, OperatorFlag from towhee.types.arg import arg, to_image_color from towhee import register @register(output_schema=['vec']) class Clip(NNOperator): """ CLIP multi-modal embedding operator """ def __init__(self, name: str, modality: str): sys.path.append(str(Path(__file__).parent)) #from clip_impl import load import clip_impl self.modality = modality self.device = "cuda" if torch.cuda.is_available() else "cpu" self._model, self.preprocess = clip_impl.load(name, self.device) self.tokenize = clip_impl.tokenize def __call__(self, data): if self.modality == 'image': vec = self._inference_from_image(data) elif self.modality == 'text': vec = self._inference_from_text(data) else: raise ValueError("modality[{}] not implemented.".format(self._modality)) return vec def _inference_from_text(self, text): text = self.tokenize(text).to(self.device) text_features = self._model.encode_text(text) return text_features @arg(1, to_image_color('RGB')) def _inference_from_image(self, img): image = self.preprocess(to_pil(img)).unsqueeze(0).to(self.device) image_features = self._model.encode_image(image) return image_features