You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
432 lines
17 KiB
432 lines
17 KiB
from collections import OrderedDict
|
|
from typing import Tuple, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
expansion = 4
|
|
|
|
def __init__(self, inplanes, planes, stride=1):
|
|
super().__init__()
|
|
|
|
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
|
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
|
|
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
|
|
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
|
|
|
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
|
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.downsample = None
|
|
self.stride = stride
|
|
|
|
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
|
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
|
self.downsample = nn.Sequential(OrderedDict([
|
|
("-1", nn.AvgPool2d(stride)),
|
|
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
|
("1", nn.BatchNorm2d(planes * self.expansion))
|
|
]))
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
identity = x
|
|
|
|
out = self.relu(self.bn1(self.conv1(x)))
|
|
out = self.relu(self.bn2(self.conv2(out)))
|
|
out = self.avgpool(out)
|
|
out = self.bn3(self.conv3(out))
|
|
|
|
if self.downsample is not None:
|
|
identity = self.downsample(x)
|
|
|
|
out += identity
|
|
out = self.relu(out)
|
|
return out
|
|
|
|
|
|
class AttentionPool2d(nn.Module):
|
|
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
|
super().__init__()
|
|
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
|
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
|
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
|
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
|
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
|
self.num_heads = num_heads
|
|
|
|
def forward(self, x):
|
|
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
|
|
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
|
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
|
x, _ = F.multi_head_attention_forward(
|
|
query=x, key=x, value=x,
|
|
embed_dim_to_check=x.shape[-1],
|
|
num_heads=self.num_heads,
|
|
q_proj_weight=self.q_proj.weight,
|
|
k_proj_weight=self.k_proj.weight,
|
|
v_proj_weight=self.v_proj.weight,
|
|
in_proj_weight=None,
|
|
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
|
bias_k=None,
|
|
bias_v=None,
|
|
add_zero_attn=False,
|
|
dropout_p=0,
|
|
out_proj_weight=self.c_proj.weight,
|
|
out_proj_bias=self.c_proj.bias,
|
|
use_separate_proj_weight=True,
|
|
training=self.training,
|
|
need_weights=False
|
|
)
|
|
|
|
return x[0]
|
|
|
|
|
|
class ModifiedResNet(nn.Module):
|
|
"""
|
|
A ResNet class that is similar to torchvision's but contains the following changes:
|
|
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
|
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
|
- The final pooling layer is a QKV attention instead of an average pool
|
|
"""
|
|
|
|
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
|
|
super().__init__()
|
|
self.output_dim = output_dim
|
|
self.input_resolution = input_resolution
|
|
|
|
# the 3-layer stem
|
|
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(width // 2)
|
|
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(width // 2)
|
|
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
|
self.bn3 = nn.BatchNorm2d(width)
|
|
self.avgpool = nn.AvgPool2d(2)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
|
|
# residual layers
|
|
self._inplanes = width # this is a *mutable* variable used during construction
|
|
self.layer1 = self._make_layer(width, layers[0])
|
|
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
|
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
|
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
|
|
|
embed_dim = width * 32 # the ResNet feature dimension
|
|
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
|
|
|
|
def _make_layer(self, planes, blocks, stride=1):
|
|
layers = [Bottleneck(self._inplanes, planes, stride)]
|
|
|
|
self._inplanes = planes * Bottleneck.expansion
|
|
for _ in range(1, blocks):
|
|
layers.append(Bottleneck(self._inplanes, planes))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
def stem(x):
|
|
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]:
|
|
x = self.relu(bn(conv(x)))
|
|
x = self.avgpool(x)
|
|
return x
|
|
|
|
x = x.type(self.conv1.weight.dtype)
|
|
x = stem(x)
|
|
x = self.layer1(x)
|
|
x = self.layer2(x)
|
|
x = self.layer3(x)
|
|
x = self.layer4(x)
|
|
x = self.attnpool(x)
|
|
|
|
return x
|
|
|
|
|
|
class LayerNorm(nn.LayerNorm):
|
|
"""Subclass torch's LayerNorm to handle fp16."""
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
orig_type = x.dtype
|
|
ret = super().forward(x.type(torch.float32))
|
|
return ret.type(orig_type)
|
|
|
|
|
|
class QuickGELU(nn.Module):
|
|
def forward(self, x: torch.Tensor):
|
|
return x * torch.sigmoid(1.702 * x)
|
|
|
|
|
|
class ResidualAttentionBlock(nn.Module):
|
|
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
|
super().__init__()
|
|
|
|
self.attn = nn.MultiheadAttention(d_model, n_head)
|
|
self.ln_1 = LayerNorm(d_model)
|
|
self.mlp = nn.Sequential(OrderedDict([
|
|
("c_fc", nn.Linear(d_model, d_model * 4)),
|
|
("gelu", QuickGELU()),
|
|
("c_proj", nn.Linear(d_model * 4, d_model))
|
|
]))
|
|
self.ln_2 = LayerNorm(d_model)
|
|
self.attn_mask = attn_mask
|
|
|
|
def attention(self, x: torch.Tensor):
|
|
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
|
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
x = x + self.attention(self.ln_1(x))
|
|
x = x + self.mlp(self.ln_2(x))
|
|
return x
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
|
super().__init__()
|
|
self.width = width
|
|
self.layers = layers
|
|
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
return self.resblocks(x)
|
|
|
|
|
|
class VisionTransformer(nn.Module):
|
|
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
|
|
super().__init__()
|
|
self.input_resolution = input_resolution
|
|
self.output_dim = output_dim
|
|
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
|
|
|
scale = width ** -0.5
|
|
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
|
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
|
|
self.ln_pre = LayerNorm(width)
|
|
|
|
self.transformer = Transformer(width, layers, heads)
|
|
|
|
self.ln_post = LayerNorm(width)
|
|
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
x = self.conv1(x) # shape = [*, width, grid, grid]
|
|
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
|
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
|
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
|
x = x + self.positional_embedding.to(x.dtype)
|
|
x = self.ln_pre(x)
|
|
|
|
x = x.permute(1, 0, 2) # NLD -> LND
|
|
x = self.transformer(x)
|
|
x = x.permute(1, 0, 2) # LND -> NLD
|
|
|
|
x = self.ln_post(x[:, 0, :])
|
|
|
|
if self.proj is not None:
|
|
x = x @ self.proj
|
|
|
|
return x
|
|
|
|
|
|
class CLIP(nn.Module):
|
|
def __init__(self,
|
|
embed_dim: int,
|
|
# vision
|
|
image_resolution: int,
|
|
vision_layers: Union[Tuple[int, int, int, int], int],
|
|
vision_width: int,
|
|
vision_patch_size: int,
|
|
# text
|
|
context_length: int,
|
|
vocab_size: int,
|
|
transformer_width: int,
|
|
transformer_heads: int,
|
|
transformer_layers: int
|
|
):
|
|
super().__init__()
|
|
|
|
self.context_length = context_length
|
|
|
|
if isinstance(vision_layers, (tuple, list)):
|
|
vision_heads = vision_width * 32 // 64
|
|
self.visual = ModifiedResNet(
|
|
layers=vision_layers,
|
|
output_dim=embed_dim,
|
|
heads=vision_heads,
|
|
input_resolution=image_resolution,
|
|
width=vision_width
|
|
)
|
|
else:
|
|
vision_heads = vision_width // 64
|
|
self.visual = VisionTransformer(
|
|
input_resolution=image_resolution,
|
|
patch_size=vision_patch_size,
|
|
width=vision_width,
|
|
layers=vision_layers,
|
|
heads=vision_heads,
|
|
output_dim=embed_dim
|
|
)
|
|
|
|
self.transformer = Transformer(
|
|
width=transformer_width,
|
|
layers=transformer_layers,
|
|
heads=transformer_heads,
|
|
attn_mask=self.build_attention_mask()
|
|
)
|
|
|
|
self.vocab_size = vocab_size
|
|
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
|
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
|
self.ln_final = LayerNorm(transformer_width)
|
|
|
|
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
|
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
|
|
|
self.initialize_parameters()
|
|
|
|
def initialize_parameters(self):
|
|
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
|
nn.init.normal_(self.positional_embedding, std=0.01)
|
|
|
|
if isinstance(self.visual, ModifiedResNet):
|
|
if self.visual.attnpool is not None:
|
|
std = self.visual.attnpool.c_proj.in_features ** -0.5
|
|
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
|
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
|
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
|
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
|
|
|
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
|
|
for name, param in resnet_block.named_parameters():
|
|
if name.endswith("bn3.weight"):
|
|
nn.init.zeros_(param)
|
|
|
|
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
|
attn_std = self.transformer.width ** -0.5
|
|
fc_std = (2 * self.transformer.width) ** -0.5
|
|
for block in self.transformer.resblocks:
|
|
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
|
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
|
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
|
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
|
|
|
if self.text_projection is not None:
|
|
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
|
|
|
def build_attention_mask(self):
|
|
# lazily create causal attention mask, with full attention between the vision tokens
|
|
# pytorch uses additive attention mask; fill with -inf
|
|
mask = torch.empty(self.context_length, self.context_length)
|
|
mask.fill_(float("-inf"))
|
|
mask.triu_(1) # zero out the lower diagonal
|
|
return mask
|
|
|
|
@property
|
|
def dtype(self):
|
|
return self.visual.conv1.weight.dtype
|
|
|
|
def encode_image(self, image):
|
|
return self.visual(image.type(self.dtype))
|
|
|
|
def encode_text(self, text):
|
|
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
|
|
|
x = x + self.positional_embedding.type(self.dtype)
|
|
x = x.permute(1, 0, 2) # NLD -> LND
|
|
x = self.transformer(x)
|
|
x = x.permute(1, 0, 2) # LND -> NLD
|
|
x = self.ln_final(x).type(self.dtype)
|
|
|
|
# x.shape = [batch_size, n_ctx, transformer.width]
|
|
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
|
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
|
|
|
return x
|
|
|
|
def forward(self, image, text):
|
|
image_features = self.encode_image(image)
|
|
text_features = self.encode_text(text)
|
|
|
|
# normalized features
|
|
image_features = image_features / image_features.norm(dim=1, keepdim=True)
|
|
text_features = text_features / text_features.norm(dim=1, keepdim=True)
|
|
|
|
# cosine similarity as logits
|
|
logit_scale = self.logit_scale.exp()
|
|
logits_per_image = logit_scale * image_features @ text_features.t()
|
|
logits_per_text = logits_per_image.t()
|
|
|
|
# shape = [global_batch_size, global_batch_size]
|
|
return logits_per_image, logits_per_text
|
|
|
|
|
|
def convert_weights(model: nn.Module):
|
|
"""Convert applicable model parameters to fp16"""
|
|
|
|
def _convert_weights_to_fp16(l):
|
|
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
|
l.weight.data = l.weight.data.half()
|
|
if l.bias is not None:
|
|
l.bias.data = l.bias.data.half()
|
|
|
|
if isinstance(l, nn.MultiheadAttention):
|
|
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
|
tensor = getattr(l, attr)
|
|
if tensor is not None:
|
|
tensor.data = tensor.data.half()
|
|
|
|
for name in ["text_projection", "proj"]:
|
|
if hasattr(l, name):
|
|
attr = getattr(l, name)
|
|
if attr is not None:
|
|
attr.data = attr.data.half()
|
|
|
|
model.apply(_convert_weights_to_fp16)
|
|
|
|
|
|
def build_model(state_dict: dict):
|
|
vit = "visual.proj" in state_dict
|
|
|
|
if vit:
|
|
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
|
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
|
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
|
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
|
image_resolution = vision_patch_size * grid_size
|
|
else:
|
|
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
|
vision_layers = tuple(counts)
|
|
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
|
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
|
vision_patch_size = None
|
|
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
|
image_resolution = output_width * 32
|
|
|
|
embed_dim = state_dict["text_projection"].shape[1]
|
|
context_length = state_dict["positional_embedding"].shape[0]
|
|
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
|
transformer_width = state_dict["ln_final.weight"].shape[0]
|
|
transformer_heads = transformer_width // 64
|
|
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
|
|
|
model = CLIP(
|
|
embed_dim,
|
|
image_resolution, vision_layers, vision_width, vision_patch_size,
|
|
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
|
|
)
|
|
|
|
for key in ["input_resolution", "context_length", "vocab_size"]:
|
|
if key in state_dict:
|
|
del state_dict[key]
|
|
|
|
convert_weights(model)
|
|
model.load_state_dict(state_dict)
|
|
return model.eval()
|