logo
clip
repo-copy-icon

copied

You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

Updated 3 years ago

towhee

Image-Text Retrieval Embdding with CLIP

author: David Wang


Description

This operator extracts features for image or text with CLIP which can genearte the embedding for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. This operator is an adaptation from openai/CLIP.


Code Example

Load an image from path './teddy.jpg' to generate an image embedding.

Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding.

Write the pipeline in simplified style:

import towhee

towhee.glob('./teddy.jpg') \
      .image_decode.cv2() \
      .towhee.clip(name='ViT-B/32', modality='image') \
      .show()

towhee.dc(["A teddybear on a skateboard in Times Square."]) \
      .towhee.clip(name='ViT-B/32', modality='text') \
      .show()
result1 result2

Write a same pipeline with explicit inputs/outputs name specifications:

import towhee

towhee.glob['path']('./teddy.jpg') \
      .image_decode.cv2['path', 'img']() \
      .towhee.clip['img', 'vec'](name='ViT-B/32', modality='image') \
      .select['img', 'vec']() \
      .show()

towhee.dc['text'](["A teddybear on a skateboard in Times Square."]) \
      .towhee.clip['text','vec'](name='ViT-B/32', modality='text') \
      .select['text', 'vec']() \
      .show()
result1 result2


Factory Constructor

Create the operator via the following factory method

clip(name, modality)

Parameters:

name: str

​ The model name of CLIP. avaliable options are:

  • RN50
  • RN101
  • RN50x4
  • RN50x16
  • RN50x64
  • ViT-B/32
  • ViT-B/64
  • ViT-L/14

modality: str

​ Which modality(image or text) is used to generate the embedding.


Interface

An image-text embedding operator takes a towhee image or string as input and generate an embedding in ndarray.

Parameters:

data: towhee.types.Image (a sub-class of numpy.ndarray) or str

​ The data(image or text based on choosed modality) to generate the embedding.

Returns: numpy.ndarray

​ The data embedding extracted by model.

wxywb e0e87293d9 fix the readme code snippet. 8 Commits
file-icon .gitattributes
1.1 KiB
download-icon
Initial commit 3 years ago
file-icon README.md
2.6 KiB
download-icon
fix the readme code snippet. 3 years ago
file-icon __init__.py
685 B
download-icon
update clip readme. 3 years ago
file-icon bpe_simple_vocab_16e6.txt.gz
1.3 MiB
download-icon
init clip operator. 3 years ago
file-icon clip.py
2.1 KiB
download-icon
update clip. 3 years ago
file-icon clip_impl.py
9.0 KiB
download-icon
update clip. 3 years ago
file-icon clip_model.py
17 KiB
download-icon
update clip. 3 years ago
file-icon simple_tokenizer.py
4.5 KiB
download-icon
init clip operator. 3 years ago
file-icon tabular1.png
185 KiB
download-icon
update the readme. 3 years ago
file-icon tabular2.png
22 KiB
download-icon
update readme. 3 years ago
file-icon vec1.png
13 KiB
download-icon
update the readme. 3 years ago
file-icon vec2.png
13 KiB
download-icon
update the readme. 3 years ago