logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

74 lines
2.9 KiB

2 years ago
import argparse
import os
import re
import string
import time
import sys
from pathlib import Path
import torch
import pandas as pd
import towhee
from towhee.operator.base import NNOperator, OperatorFlag
from towhee import register
import warnings
warnings.filterwarnings('ignore')
import logging
log = logging.getLogger()
@register(output_schema=["scorelist"],
flag=OperatorFlag.STATELESS | OperatorFlag.REUSEABLE)
class Deepfake(NNOperator):
'''
Deepfake
'''
def __init__(self):
super().__init__()
sys.path.append(str(Path(__file__).parent))
weights_dir = os.path.join(str(Path(__file__).parent),"weights/")
self.model_paths = [os.path.join(weights_dir,model) for model in os.listdir(weights_dir)]
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
2 years ago
from kernel_utils import VideoReader, FaceExtractor, confident_strategy, predict_on_video
from classifiers import DeepFakeClassifier
models = []
for path in self.model_paths:
model = DeepFakeClassifier(encoder="tf_efficientnet_b7_ns").to(self.device)
print("loading state dict {}".format(path))
checkpoint = torch.load(path, map_location="cpu")
state_dict = checkpoint.get("state_dict", checkpoint)
model.load_state_dict({re.sub("^module.", "", k): v for k, v in state_dict.items()}, strict=False)
model.eval()
del checkpoint
models.append(model.float())
self.frames_per_video = 32
2 years ago
video_reader = VideoReader()
video_read_fn = lambda x: video_reader.read_frames(x, num_frames=self.frames_per_video)
self.face_extractor = FaceExtractor(video_read_fn)
self.input_size = 384
self.strategy = confident_strategy
self.models = models
self.predict_on_video = predict_on_video
def __call__(self, filepath: string) -> list:
prediction = self.predict_on_video(False, face_extractor=self.face_extractor, video_path=filepath,
input_size=self.input_size, batch_size=self.frames_per_video, models=self.models,
strategy=self.strategy, apply_compression=False)
2 years ago
'''
test_videos = sorted([x for x in os.listdir(filepath) if x[-4:] == ".mp4"])
print("Predicting {} videos".format(len(test_videos)))
predictions = predict_on_video_set(False, face_extractor=face_extractor, input_size=input_size, models=models,
strategy=strategy, frames_per_video=frames_per_video, videos=test_videos,
num_workers=2, test_dir=filepath)
'''
return prediction
'''
if __name__ == "__main__":
filepath = "/Users/zilliz/Desktop/deepfake_video/test/aagfhgtpmv.mp4"
op = Deepfake()
pred = op(filepath=filepath)
print(pred)
'''