towhee
/
distill-and-select
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
112 lines
4.9 KiB
112 lines
4.9 KiB
# Copyright 2021 Zilliz. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import torch
|
|
|
|
from typing import Union, Any
|
|
from torchvision import transforms
|
|
from towhee.operator.base import NNOperator
|
|
from towhee import register
|
|
from PIL import Image as PILImage
|
|
from .model.feature_extractor import FeatureExtractor
|
|
from .model.students import FineGrainedStudent, CoarseGrainedStudent
|
|
from .model.selector import SelectorNetwork
|
|
from torch import nn
|
|
|
|
|
|
@register(output_schema=['vec'])
|
|
class DistillAndSelect(NNOperator):
|
|
"""
|
|
DistillAndSelect
|
|
"""
|
|
|
|
def __init__(self, model_name: str, model_weight_path: str = None,
|
|
feature_extractor: Union[str, nn.Module] = 'default', device: str = None):
|
|
"""
|
|
|
|
Args:
|
|
model_name (`str`):
|
|
Can be one of them:
|
|
`feature_extractor`: Feature Extractor only,
|
|
`fg_att_student`: Fine Grained Student with attention,
|
|
`fg_bin_student`: Fine Grained Student with binarization,
|
|
`cg_student`: Coarse Grained Student,
|
|
`selector_att`: Selector Network with attention,
|
|
`selector_bin`: Selector Network with binarization.
|
|
model_weight_path (`str`):
|
|
Default is None, download use the original pretrained weights.
|
|
feature_extractor (`Union[str, nn.Module]`):
|
|
`None`, 'default' or a pytorch nn.Module instance.
|
|
`None` means this operator don't support feature extracting from the video data and this operator process embedding feature as input.
|
|
'default' means using the original pretrained feature extracting weights and this operator can process video data as input.
|
|
Or you can pass in a nn.Module instance as a specific feature extractor.
|
|
Default is `default`.
|
|
device (`str`):
|
|
Model device, cpu or cuda.
|
|
"""
|
|
super().__init__()
|
|
assert model_name in ['feature_extractor', 'fg_att_student', 'fg_bin_student', 'cg_student', 'selector_att',
|
|
'selector_bin'], 'unsupported model.'
|
|
if device is None:
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
else:
|
|
self.device = device
|
|
|
|
self.model_name = model_name
|
|
|
|
self.feature_extractor = None
|
|
if feature_extractor == 'default':
|
|
self.feature_extractor = FeatureExtractor(dims=512).to(device).eval()
|
|
elif isinstance(feature_extractor, nn.Module):
|
|
self.feature_extractor = feature_extractor
|
|
|
|
self.model = None
|
|
pretraind = True if model_weight_path is None else None
|
|
if self.model_name == 'fg_att_student':
|
|
self.model = FineGrainedStudent(pretrained=pretraind, attention=True)
|
|
elif self.model_name == 'fg_bin_student':
|
|
self.model = FineGrainedStudent(pretrained=pretraind, binarization=True)
|
|
|
|
elif self.model_name == 'cg_student':
|
|
self.model = CoarseGrainedStudent(pretrained=pretraind)
|
|
|
|
elif self.model_name == 'selector_att':
|
|
self.model = SelectorNetwork(pretrained=pretraind, attention=True)
|
|
elif self.model_name == 'selector_bin':
|
|
self.model = SelectorNetwork(pretrained=pretraind, binarization=True)
|
|
|
|
if model_weight_path is not None:
|
|
self.model.load_state_dict(torch.load(model_weight_path))
|
|
|
|
if self.model is not None:
|
|
self.model.to(device).eval()
|
|
|
|
self.tfms = transforms.Compose([
|
|
transforms.Resize(256, interpolation=transforms.InterpolationMode.BICUBIC),
|
|
transforms.CenterCrop(256),
|
|
transforms.ToTensor(),
|
|
])
|
|
|
|
def __call__(self, data: Any): # List[VideoFrame] when self.feature_extractor is not None
|
|
if self.feature_extractor is not None:
|
|
pil_img_list = []
|
|
for img in data:
|
|
pil_img = PILImage.fromarray(img, img.mode)
|
|
tfmed_img = self.tfms(pil_img).permute(1, 2, 0).unsqueeze(0)
|
|
pil_img_list.append(tfmed_img)
|
|
data = torch.concat(pil_img_list, dim=0) * 255
|
|
data = self.feature_extractor(data.to(self.device)).to(self.device)
|
|
if self.model_name == 'feature_extractor':
|
|
return data.cpu().detach().squeeze().numpy()
|
|
index_feature = self.model.index_video(data)
|
|
return index_feature.cpu().detach().squeeze().numpy()
|