logo
Browse Source

implementations

main
oneseer 4 years ago
parent
commit
deb987d935
  1. 60
      README.md
  2. 21
      __init__.py
  3. 48
      efficientnet_embedding.py
  4. 13
      efficientnet_embedding.yaml
  5. 13
      pytorch/__init__.py
  6. 39
      pytorch/model.py
  7. BIN
      readme_res/operator.png
  8. 0
      requirements.txt

60
README.md

@ -1,3 +1,59 @@
# efficientnet-embedding
# Efficientnet Embedding Operator
Authors: kyle he
## Overview
EfficientNets are a family of image classification models, which achieve state-of-the-art accuracy, yet being an order-of-magnitude smaller and faster than previous models[1], which is trained on [imagenet dataset](https://image-net.org/download.php).
## Interface
```python
__init__(self, model_name: str = 'efficientnet-b7', framework: str = 'pytorch', weights_path: str = None)
```
**Args:**
- model_name:
- the model name for embedding
- supported types: `str`, for example 'efficientnet-b7'
- framework:
- the framework of the model
- supported types: `str`, default is 'pytorch'
- weights_path:
- the weights path
- supported types: `str`, default is None, using pretrained weights
```python
__call__(self, img_path: str)
```
**Args:**
- img_path:
- the input image path
- supported types: `str`
**Returns:**
The Operator returns a tuple `Tuple[('feature_vector', numpy.ndarray)]` containing following fields:
- feature_vector:
- the embedding of the image
- data type: `numpy.ndarray`
## Requirements
You can get the required python package by [requirements.txt](./requirements.txt).
## How it works
The `towhee/efficientnet-embedding` Operator implements the function of image embedding, which can add to the pipeline. For example, it's the key Operator named embedding_model within [efficientnet-embedding](https://hub.towhee.io/towhee/efficientnet-embedding) pipeline.
## Reference
[1].https://github.com/lukemelas/EfficientNet-PyTorch#example-feature-extraction
This is another test repo

21
__init__.py

@ -0,0 +1,21 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
# For requirements.
try:
import efficientnet_pytorch
except ModuleNotFoundError:
os.system('pip install efficientnet_pytorch')

48
efficientnet_embedding.py

@ -0,0 +1,48 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import NamedTuple
from PIL import Image
import torch
from torchvision import transforms
import sys
from pathlib import Path
from towhee.operator import Operator
class EfficientnetEmbeddingOperator(Operator):
"""
Embedding extractor using efficientnet.
Args:
model_name (`string`):
Model name.
weights_path (`string`):
Path to local weights.
"""
def __init__(self, model_name: str = 'efficientnet-b7', framework: str = 'pytorch', weights_path: str = None) -> None:
super().__init__()
sys.path.append(str(Path(__file__).parent))
if framework == 'pytorch':
from pytorch.model import Model
self.model = Model(model_name, weights_path)
self.tfms = transforms.Compose([transforms.Resize(224), transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ])
def __call__(self, img_path: str) -> NamedTuple('Outputs', [('embedding', torch.Tensor)]):
Outputs = NamedTuple('Outputs', [('embedding', torch.Tensor)])
img = self.tfms(Image.open(img_path)).unsqueeze(0)
features = self.model._model.extract_features(img)
return Outputs(features.flatten().detach().numpy())

13
efficientnet_embedding.yaml

@ -0,0 +1,13 @@
name: 'efficientnet-embedding'
labels:
recommended_framework: pytorch1.2.0
class: image-embedding
others: efficientnet
operator: 'towhee/efficientnet-embedding'
init:
model_name: str
call:
input:
img_path: str
output:
feature_vector: numpy.ndarray

13
pytorch/__init__.py

@ -0,0 +1,13 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

39
pytorch/model.py

@ -0,0 +1,39 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import NamedTuple
import numpy
import torch
from efficientnet_pytorch import EfficientNet
class Model():
"""
PyTorch model class
"""
def __init__(self, model_name: str, weights_path: str):
super().__init__()
self._model = EfficientNet.from_pretrained(model_name=model_name, weights_path=weights_path)
self._model.eval()
def __call__(self, img_tensor: torch.Tensor):
return self._model(img_tensor).detach().numpy()
def train(self):
"""
For training model
"""
pass

BIN
readme_res/operator.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 262 KiB

0
requirements.txt

Loading…
Cancel
Save