# Enhanced QA Insert ## Description **Enhanced question-answering** is the process of creating the knowledge base and generating answers with LLMs(large language model), thus preventing illusions. It involves inserting data as knowledge base and querying questions, and **eqa-insert** is used to insert document data for knowledge base.
## Code Example ### **Create Milvus collection** Before running the pipeline, please create Milvus collection first. > The `dim` is the dimensionality of the feature vector generated by the configured `model` in the `eqa-insert` pipeline. ```python from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection, utility collection_name = 'chatbot' dim = 384 connections.connect(host='172.16.70.4', port='19530') fields = [ FieldSchema(name='id', dtype=DataType.INT64, descrition='ids', is_primary=True, auto_id=True), FieldSchema(name='text_id', dtype=DataType.VARCHAR, descrition='text', max_length=500), FieldSchema(name='text', dtype=DataType.VARCHAR, descrition='text', max_length=1000), FieldSchema(name='embedding', dtype=DataType.FLOAT_VECTOR, descrition='embedding vectors', dim=dim) ] schema = CollectionSchema(fields=fields, description='enhanced qa') collection = Collection(name=collection_name, schema=schema) index_params = { 'metric_type':"IP", 'index_type':"IVF_FLAT", 'params':{"nlist":2048} } collection.create_index(field_name="embedding", index_params=index_params) ``` ### **Create pipeline and set the configuration** > More parameters refer to the Configuration. ```python from towhee import AutoPipes, AutoConfig config = AutoConfig.load_config('eqa-insert') config.model = 'all-MiniLM-L6-v2' config.host = '127.0.0.1' config.port = '19530' config.collection_name = collection_name p = AutoPipes.pipeline('eqa-insert', config=config) res = p('https://raw.githubusercontent.com/towhee-io/towhee/main/README.md') ``` Then you can run `collection.num_entities` to check the number of the data in Milvus as a knowledge base.
## Configuration ### **EnhancedQAInsertConfig** #### **Configuration for [Text Loader](https://towhee.io/towhee/text-loader):** ***chunk_size: int*** The size of each chunk, defaults to 300. ***source_type: str*** The type of the soure, defaults to `'file'`, you can also set to `'url'` for you url of your documentation. #### **Configuration for Sentence Embedding:** ***model: str*** The model name in the sentence embedding pipeline, defaults to `'all-MiniLM-L6-v2'`. You can refer to the above [Model(s) list ](https://towhee.io/tasks/detail/operator?field_name=Natural-Language-Processing&task_name=Sentence-Embedding)to set the model, some of these models are from [HuggingFace](https://huggingface.co/) (open source), and some are from [OpenAI](https://openai.com/) (not open, required API key). ***openai_api_key: str*** The api key of openai, default to `None`. This key is required if the model is from OpenAI, you can check the model provider in the above [Model(s) list](https://towhee.io/sentence-embedding/openai). ***customize_embedding_op: str*** The name of the customize embedding operator, defaults to `None`. ***normalize_vec: bool*** Whether to normalize the embedding vectors, defaults to `True`. ***device:*** ***int*** The number of devices, defaults to `-1`, which means using the CPU. If the setting is not `-1`, the specified GPU device will be used. #### **Configuration for [Milvus](https://towhee.io/ann-insert/milvus-client):** ***host: str*** Host of Milvus vector database, default is `'127.0.0.1'`. ***port: str*** Port of Milvus vector database, default is `'19530'`. ***collection_name: str*** The collection name for Milvus vector database, is required when inserting data into Milvus. ***user: str*** The user name for [Cloud user](https://zilliz.com/cloud), defaults to `None`. ***password: str*** The user password for [Cloud user](https://zilliz.com/cloud), defaults to `None`.
## Interface Insert documentation into Milvus as a knowledge base. **Parameters:** ***doc***: str Path or url of the document to be loaded. **Returns:** MutationResult A MutationResult after inserting Milvus.