logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

95 lines
3.7 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Optional, Any
from pydantic import BaseModel
from towhee import ops, pipe, AutoPipes, AutoConfig
@AutoConfig.register
class EnhancedQAInsertConfig(BaseModel):
"""
Config of pipeline
"""
# config for text_splitter
type: Optional[str] = 'RecursiveCharacter'
chunk_size: int = 300
splitter_kwargs: Optional[Dict[str, Any]] = {}
# config for sentence_embedding
model: Optional[str] = 'all-MiniLM-L6-v2'
openai_api_key: Optional[str] = None
device: Optional[int] = -1
# config for insert_milvus
host: Optional[str] = '127.0.0.1'
port: Optional[str] = '19530'
collection_name: Optional[str] = 'chatbot'
user: Optional[str] = None
password: Optional[str] = None
_hf_models = ops.sentence_embedding.transformers().get_op().supported_model_names()
_sbert_models = ops.sentence_embedding.sbert().get_op().supported_model_names()
_openai_models = ['text-embedding-ada-002', 'text-similarity-davinci-001',
'text-similarity-curie-001', 'text-similarity-babbage-001',
'text-similarity-ada-001']
def _get_embedding_op(config):
if config.device == -1:
device = 'cpu'
else:
device = config.device
if config.model in _hf_models:
return True, ops.sentence_embedding.transformers(model_name=config.model, device=device)
if config.model in _sbert_models:
return True, ops.sentence_embedding.sbert(model_name=config.model, device=device)
if config.model in _openai_models:
return False, ops.sentence_embedding.openai(model_name=config.model, api_key=config.openai_api_key)
raise RuntimeError('Unknown model: [%s], only support: %s' % (config.model, _hf_models + _sbert_models + _openai_models))
@AutoPipes.register
def enhanced_qa_insert_pipe(config):
text_split_op = ops.text_splitter(type=config.type,
chunk_size=config.chunk_size,
**config.splitter_kwargs)
allow_triton, sentence_embedding_op = _get_embedding_op(config)
sentence_embedding_config = {}
if allow_triton:
if config.device >= 0:
sentence_embedding_config = AutoConfig.TritonGPUConfig(device_ids=[config.device], max_batch_size=128)
else:
sentence_embedding_config = AutoConfig.TritonCPUConfig()
insert_milvus_op = ops.ann_insert.milvus_client(host=config.host,
port=config.port,
collection_name=config.collection_name,
user=config.user,
password=config.password,
)
return (
pipe.input('doc')
.map('doc', 'text', ops.text_loader())
.flat_map('text', 'sentence', text_split_op)
.map('sentence', 'embedding', sentence_embedding_op, config=sentence_embedding_config)
.map('embedding', 'embedding', ops.towhee.np_normalize())
.map(('doc', 'sentence', 'embedding'), 'mr', insert_milvus_op)
.output('mr')
)