# eqa-search # Enhanced QA Search ## Description **Enhanced question-answering** is the process of creating the knowledge base and generating answers with LLMs(large language model), thus preventing illusions. It involves inserting data as knowledge base and querying questions, and **eqa-search** is used to query questions from knowledge base.
## Code Example ### **Create pipeline and set the configuration** > More parameters refer to the Configuration. ```python from towhee import AutoPipes, AutoConfig config = AutoConfig.load_config('eqa-search') config.openai_api_key = [your-openai-api-key] config.collection_name = 'chatbot' # The llm model source, openai or dolly config.llm_src = 'openai' # The llm model name config.llm_model = 'gpt-3.5-turbo' # The threshold to filter milvus search result config.threshold = 0.5 p = AutoPipes.pipeline('eqa-search', config=config) res = p('https://github.com/towhee-io/towhee/blob/main/README.md', []) ```
## Enhanced QA Search Config ### Configuration for Sentence Embedding ***model (str):*** The model name in the sentence embedding pipeline, defaults to `'all-MiniLM-L6-v2'`. You can refer to the above [Model(s) list ](https://towhee.io/tasks/detail/operator?field_name=Natural-Language-Processing&task_name=Sentence-Embedding)to set the model, some of these models are from [HuggingFace](https://huggingface.co/) (open source), and some are from [OpenAI](https://openai.com/) (not open, required API key). ***openai_api_key (str):*** The api key of openai, default to `None`. This key is required if the model is from OpenAI, you can check the model provider in the above [Model(s) list](https://towhee.io/sentence-embedding/openai). ***embedding_device (int):*** The number of devices, defaults to `-1`, which means using the CPU. If the setting is not `-1`, the specified GPU device will be used. ### Configuration for [Milvus](https://towhee.io/ann-search/milvus-client) ***host (str):*** Host of Milvus vector database, default is `'127.0.0.1'`. ***port (str):*** Port of Milvus vector database, default is `'19530'`. ***top_k (int):*** The number of nearest search results, defaults to 5. ***collection_name (str):*** The collection name for Milvus vector database. ***user (str):*** The user name for [Cloud user](https://zilliz.com/cloud), defaults to `None`. ***password (str):*** The user password for [Cloud user](https://zilliz.com/cloud), defaults to `None`. ### Configuration for Similarity Evaluation ***threshold (Union[float, int]):*** The threshold to filter the milvus search result. ### Configuration for LLM ***llm_src (str):*** The llm model source, `openai` or `dolly`, defaults to `openai`. ***llm_model (str):*** The llm model name, defaults to `gpt-3.5-turbo` for `openai`, `databricks/dolly-v2-12b` for `dolly`.
## Interface Query a question from Milvus knowledge base. **Parameters:** - ***question (str):*** The question to query. - ***history (List[str]):*** The chat history to provide background information. **Returns:** - ***Answer (str):*** The answer to the question.