This pipeline is used to **extract the feature vector of the image**. First step is to normalize the image, and then use resnet50 model to generate the vector.
The pipeline parses [the yaml file](./image_embedding_resnet50.yaml), which declares some components we call **Operator** and **DataFrame**. Next, we will introduce the interface, show how to use it and how it works, have fun with it!
When we declare a pipeline object with a specific task, such as `towhee/image-embedding-resnet50` in this repo, it will run according to the Yaml file, and the input and output are:
> You can refer to [Getting Started with Towhee](towhee.io) for more details. If you have any questions, you can [submit an issue to the towhee repository](https://github.com/towhee-io/towhee/issues).
First of all, you need to learn the pipeline and operator in Towhee architecture:
- **Pipeline**: A `Pipeline` is a single machine learning task that is composed of several operators. Operators are connected together internally via a directed acyclic graph.
- **Operator**: An `Operator` is a single node within a pipeline. It contains files (e.g. code, configs, models, etc...) and works for reusable operations (e.g., preprocessing an image, inference with a pretrained model).
This pipeline includes four functions: `_start_op`, `towhee/transform-image`, `towhee/resnet50-image-embedding` and `_end_op`. It is necessary to ensure that the input and output of the four Operators correspond to each other, and the input and output data types can be defined by DataFrame.
Among the four Operator, `_start_op` and `_end_op` are required in any Pipeline, and they are used to start and end the pipeline in the Towhee system. For the other two Operators, please refer to [towhee/transform-image](https://hub.towhee.io/towhee/transform-image) and [towhee/resnet50-image-embedding](https://hub.towhee.io/towhee/resnet50-image-embedding).