**[OSSChat](https://osschat.io/)** is enhanced ChatGPT with documentation, issues, blog posts, community Q&A as knowledge bases. Built for every community and developer. The osschat-insert pipeline is used to insert data.
#### **Configuration for [Text Splitter](https://towhee.io/towhee/text-splitter):**
***type***: str
The type of splitter, defaults to 'RecursiveCharacter'. You can set this parameter in ['[RecursiveCharacter](https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/recursive_text_splitter.html)', '[Markdown](https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/markdown.html)', '[PythonCode](https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/python.html)', '[Character](https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/character_text_splitter.html#)', '[NLTK](https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/nltk.html)', '[Spacy](https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/spacy.html)', '[Tiktoken](https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/tiktoken_splitter.html)', '[HuggingFace](https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/huggingface_length_function.html)'].
The model name for sentence embedding, defaults to `'all-MiniLM-L6-v2'`.
You can refer to the above [Model(s) list ](https://towhee.io/tasks/detail/operator?field_name=Natural-Language-Processing&task_name=Sentence-Embedding)to set the model, some of these models are from [HuggingFace](https://huggingface.co/) (open source), and some are from [OpenAI](https://openai.com/) (not open, required API key).
This key is required if the model is from OpenAI, you can check the model provider in the above [Model(s) list](https://towhee.io/sentence-embedding/openai).
- [OpenAI's ChatGPT - Zilliz blog](https://zilliz.com/learn/ChatGPT-Vector-Database-Prompt-as-code): A guide to the new AI Stack - ChatGPT, your Vector Database, and Prompt as code
- [Enhancing ChatGPT with Milvus: Powering AI with Long-Term Memory - Zilliz blog](https://zilliz.com/learn/enhancing-chatgpt-with-milvus): By integrating GPTCache and Milvus with ChatGPT, businesses can create a more robust and efficient AI-powered support system. This approach leverages the advanced capabilities of generative AI and introduces a form of long-term memory, allowing the AI to recall and reuse information effectively.
- [ChatGPT+ Vector database + prompt-as-code - The CVP Stack - Zilliz blog](https://zilliz.com/blog/ChatGPT-VectorDB-Prompt-as-code): Extend the capability of ChatGPT with a Vector database and prompts-as-code