import numpy as np
from typing import List

from sentence_transformers import CrossEncoder
from towhee.operator import NNOperator

class ReRank(NNOperator):
    def __init__(self, model_name: str = 'cross-encoder/ms-marco-MiniLM-L-12-v2'):
        super().__init__()
        self._model_name = model_name
        self._model = CrossEncoder(self._model_name, max_length=1000)

    def __call__(self, query: str, docs: List):
        scores = self._model.predict([(query, doc) for doc in docs])
        re_ids = sorted(range(len(scores)), key=lambda k: scores[k], reverse=True)
        re_docs = [docs[i] for i in re_ids]
        re_scores = [scores[i] for i in re_ids]
        return re_docs, re_scores