logo
rerank
repo-copy-icon

copied

You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

32 lines
1.3 KiB

from typing import List
from torch import nn
from sentence_transformers import CrossEncoder
from towhee.operator import NNOperator
class ReRank(NNOperator):
def __init__(self, model_name: str = 'cross-encoder/ms-marco-MiniLM-L-6-v2', threshold: float = 0.6, device: str = None):
super().__init__()
self._model_name = model_name
self._model = CrossEncoder(self._model_name, device=device)
if self._model.config.num_labels == 1:
self._model.default_activation_function = nn.Sigmoid()
self._threshold = threshold
def __call__(self, query: str, docs: List):
if len(docs) == 0:
return [], []
if self._model.config.num_labels > 1:
scores = self._model.predict([(query, doc) for doc in docs], apply_softmax=True)[:, 1]
else:
scores = self._model.predict([(query, doc) for doc in docs])
re_ids = sorted(range(len(scores)), key=lambda k: scores[k], reverse=True)
if self._threshold is None:
re_docs = [docs[i] for i in re_ids]
re_scores = [scores[i] for i in re_ids]
else:
re_docs = [docs[i] for i in re_ids if scores[i] >= self._threshold]
re_scores = [scores[i] for i in re_ids if scores[i] >= self._threshold]
return re_docs, re_scores