# Video Alignment with Temporal Network *author: David Wang*
## Description This operator can compare two ordered sequences, then detect the range which features from each sequence are computationally similar in order.
## Code Example ```python from towhee.dc2 import pipe, ops, DataCollection import numpy as np # simulate a video feature by 10 frames of 512d vectors. videos_embeddings = np.random.randn(10,512) videos_embeddings = videos_embeddings / np.linalg.norm(videos_embeddings,axis=1).reshape(10,-1) p = ( pipe.input('src', 'dest') \ .map(('src', 'dest'), ('range', 'range_score'), ops.video_copy_detection.temporal_network()) \ .output('src', 'dest', 'range', 'range_score') ) DataCollection(p(videos_embeddings, videos_embeddings)).show() ``` result
## Factory Constructor Create the operator via the following factory method ***clip(model_name, modality)*** ***temporal_network(tn_max_step, tn_top_k, max_path, min_sim, min_length, max_iou)*** **Parameters:** ​ ***tn_max_step:*** *str* ​ Max step range in TN. ​ ***tn_top_k:*** *str* ​ Top k frame similarity selection in TN. ​ ***max_path:*** *str* ​ Max loop for multiply segments detection. ​ ***min_sim:*** *str* ​ Min average similarity score for each aligned segment. ​ ***min_length:*** *str* ​ Min segment length. ​ ***max_iout:*** *str* ​ Max iou for filtering overlap segments (bbox).
## Interface A Temporal Network operator takes two numpy.ndarray(shape(N,D) N: number of features. D: dimension of features) and get the duplicated ranges and scores. **Parameters:** ​ ***src_video_vec*** *numpy.ndarray* ​ Source video feature vectors. ​ ***dst_video_vec:*** *numpy.ndarray* ​ Destination video feature vectors. **Returns:** ​ ***aligned_ranges:*** *List[List[Int]]* ​ The returned aligned range. ​ ***aligned_scores:*** *List[float]* ​ The returned similarity scores(length same as aligned_ranges).