copied
Readme
Files and versions
Updated 2 years ago
video-copy-detection
Video Alignment with Temporal Network
author: David Wang
Description
This operator can compare two ordered sequences, then detect the range which features from each sequence are computationally similar in order.
Code Example
# simulate a video feature by 10 frames of 512d vectors.
videos_embeddings = np.random.randn(10,512)
videos_embeddings = videos_embeddings / np.linalg.norm(videos_embeddings,axis=1).reshape(10,-1)
towhee.dc['src','dest']([[videos_embeddings,videos_embeddings]]) \
.video_copy_detection.temporal_network[('src','dest'), ('range', 'range_score')]() \
.show()
Factory Constructor
Create the operator via the following factory method
clip(model_name, modality) temporal_network(tn_max_step, tn_top_k, max_path, min_sim, min_length, max_iou)
Parameters:
tn_max_step: str
Max step range in TN.
tn_top_k: str
Top k frame similarity selection in TN.
max_path: str
Max loop for multiply segments detection.
min_sim: str
Min average similarity score for each aligned segment.
min_length: str
Min segment length.
max_iout: str
Max iou for filtering overlap segments (bbox).
Interface
A Temporal Network operator takes two numpy.ndarray(shape(N,D) N: number of features. D: dimension of features) and get the duplicated ranges and scores.
Parameters:
src_video_vec numpy.ndarray
Source video feature vectors.
dst_video_vec: numpy.ndarray
Destination video feature vectors.
Returns:
aligned_ranges: List[List[Int]]
The returned aligned range.
aligned_scores: List[float]
The returned similarity scores(length same as aligned_ranges).
wxywb
4eeef96e9a
| 4 Commits | ||
---|---|---|---|
.gitattributes |
1.1 KiB
|
2 years ago | |
README.md |
1.9 KiB
|
2 years ago | |
__init__.py |
866 B
|
2 years ago | |
requirements.txt |
17 B
|
2 years ago | |
tabular.png |
41 KiB
|
2 years ago | |
tn.py |
7.9 KiB
|
2 years ago |