# Video-Text Retrieval Embedding with BridgeFormer
*author: Jinling Xu*
## Description
This operator extracts features for video or text with [BridgeFormer](https://arxiv.org/pdf/2201.04850.pdf) which can generate embeddings for text and video by jointly training a video encoder and text encoder to maximize the cosine similarity.
## Code Example
Load a video from path './demo_video.mp4' to generate a video embedding. 
Read the text 'kids feeding and playing with the horse' to generate a text embedding. 
 *Write the pipeline in simplified style*:
- Encode video (default):
```python
import towhee
towhee.dc(['./demo_video.mp4']) \
      .video_decode.ffmpeg() \
      .video_text_embedding.bridge_former(model_name='frozen_model', modality='video') \
      .show()
```
 - Encode text:
```python
import towhee
towhee.dc(['kids feeding and playing with the horse']) \
      .video_text_embedding.bridge_former(model_name='frozen_model', modality='text') \
      .show()
```
- Encode text:
```python
import towhee
towhee.dc(['kids feeding and playing with the horse']) \
      .video_text_embedding.bridge_former(model_name='frozen_model', modality='text') \
      .show()
```
 *Write a same pipeline with explicit inputs/outputs name specifications:*
```python
import towhee
towhee.dc['path'](['./demo_video.mp4']) \
      .video_decode.ffmpeg['path', 'frames'](sample_type='uniform_temporal_subsample', args={'num_samples': 4}) \
      .runas_op['frames', 'frames'](func=lambda x: [y for y in x]) \
      .video_text_embedding.bridge_former['frames', 'vec'](model_name='frozen_model', modality='video') \
      .select['path', 'vec']() \
      .show(formatter={'path': 'video_path'})
towhee.dc['text'](["kids feeding and playing with the horse"]) \
      .video_text_embedding.bridge_former['text','vec'](model_name='frozen_model', modality='text') \
      .select['text', 'vec']() \
      .show()
```
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
import towhee
towhee.dc['path'](['./demo_video.mp4']) \
      .video_decode.ffmpeg['path', 'frames'](sample_type='uniform_temporal_subsample', args={'num_samples': 4}) \
      .runas_op['frames', 'frames'](func=lambda x: [y for y in x]) \
      .video_text_embedding.bridge_former['frames', 'vec'](model_name='frozen_model', modality='video') \
      .select['path', 'vec']() \
      .show(formatter={'path': 'video_path'})
towhee.dc['text'](["kids feeding and playing with the horse"]) \
      .video_text_embedding.bridge_former['text','vec'](model_name='frozen_model', modality='text') \
      .select['text', 'vec']() \
      .show()
```
 
 
## Factory Constructor
Create the operator via the following factory method
***bridge_former(model_name, modality, weight_path)***
**Parameters:**
   ***model_name:*** *str*
   The model name of frozen in time. Supported model names: 
- frozen_model
- clip_initialized_model
   ***modality:*** *str*
   Which modality(*video* or *text*) is used to generate the embedding. 
   ***weight_path:*** *str*
   pretrained model weights path.  
## Interface
An video-text embedding operator takes a list of [Towhee VideoFrame](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray.
**Parameters:**
	***data:*** *List[towhee.types.Image]*  or *str*
  The data (list of  Towhee VideoFrame (which is uniform subsampled from a video) or text based on specified modality) to generate embedding.	
**Returns:** *numpy.ndarray*
   The data embedding extracted by model.