clip4clip
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
158 lines
6.1 KiB
158 lines
6.1 KiB
3 years ago
|
# Copyright 2021 Zilliz. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import os
|
||
|
import random
|
||
|
import sys
|
||
|
from pathlib import Path
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import towhee
|
||
|
from torchvision import transforms
|
||
|
from towhee.models.clip4clip import convert_tokens_to_id
|
||
|
|
||
|
from towhee.types.image_utils import to_pil
|
||
|
from towhee.operator.base import NNOperator, OperatorFlag
|
||
|
from towhee.types.arg import arg, to_image_color
|
||
|
from towhee import register
|
||
|
from towhee.models import clip4clip
|
||
|
from towhee.utils.ndarray_utils import to_ndarray
|
||
|
from PIL import Image as PILImage
|
||
|
|
||
|
|
||
|
@register(name='clip4clip', output_schema=['vec'])
|
||
|
class CLIP4Clip(NNOperator):
|
||
|
"""
|
||
|
CLIP multi-modal embedding operator
|
||
|
"""
|
||
|
def __init__(self, model_name: str, modality: str, weight_path: str = None):
|
||
|
super().__init__()
|
||
|
self.modality = modality
|
||
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||
|
self.model = clip4clip.create_model(model_name=model_name,
|
||
|
context_length=77,
|
||
|
pretrained=True,
|
||
|
weights_path=weight_path,
|
||
|
device=self.device)
|
||
|
|
||
|
self.tokenize = clip4clip.SimpleTokenizer()
|
||
|
self.tfms = transforms.Compose([
|
||
|
transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC),
|
||
|
transforms.CenterCrop(224),
|
||
|
transforms.ToTensor(),
|
||
|
transforms.Normalize(
|
||
|
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
||
|
])
|
||
|
self.model.eval()
|
||
|
|
||
|
def __call__(self, data):
|
||
|
if self.modality == 'video':
|
||
|
vec = self._inference_from_video(data)
|
||
|
elif self.modality == 'text':
|
||
|
vec = self._inference_from_text(data)
|
||
|
else:
|
||
|
raise ValueError("modality[{}] not implemented.".format(self._modality))
|
||
|
return vec
|
||
|
#
|
||
|
def _inference_from_text(self, text):
|
||
|
self.model.eval()
|
||
|
# text = self.tokenize(text)
|
||
|
text_ids = convert_tokens_to_id(self.tokenize, text)
|
||
|
print(text_ids)
|
||
|
text_ids = torch.tensor(text_ids).unsqueeze(0).to(self.device)
|
||
|
text_features = self.model.get_sequence_output(text_ids)
|
||
|
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
||
|
# print(text_features.norm(dim=-1, keepdim=True))
|
||
|
return text_features#.unsqueeze(0).cpu().numpy()
|
||
|
|
||
|
def _inference_from_video(self, img_list):
|
||
|
self.model.eval()
|
||
|
# video = self.tfms(video)
|
||
|
max_frames = 12
|
||
|
video = np.zeros((1, max_frames, 1, 3, 224, 224), dtype=np.float)
|
||
|
slice_len = len(img_list)
|
||
|
max_video_length = 0 if 0 > slice_len else slice_len
|
||
|
for i, img in enumerate(img_list):
|
||
|
pil_img = PILImage.fromarray(img.to_ndarray(), img.mode)
|
||
|
tfmed_img = self.tfms(pil_img).unsqueeze(0).to(self.device)
|
||
|
print('tfmed_img.shape', tfmed_img.shape)
|
||
|
|
||
|
if slice_len >= 1:
|
||
|
video[0, i, ...] = tfmed_img
|
||
|
video_mask = np.zeros((1, max_frames), dtype=np.long)
|
||
|
video_mask[0, :max_video_length] = [1] * max_video_length
|
||
|
|
||
|
video = torch.as_tensor(video).float()
|
||
|
pair, bs, ts, channel, h, w = video.shape
|
||
|
video = video.view(pair * bs * ts, channel, h, w)
|
||
|
video_mask = torch.as_tensor(video_mask).float()
|
||
|
# video_list.append(video)
|
||
|
# video_mask_list.append(video_mask)
|
||
|
# video_list_tensor = torch.cat(video_list, dim=0)
|
||
|
# video_mask_list_tensor = torch.cat(video_mask_list, dim=0)
|
||
|
|
||
|
visual_output = self.model.get_visual_output(video, video_mask, shaped=True)
|
||
|
|
||
|
visual_output = visual_output / visual_output.norm(dim=-1, keepdim=True)
|
||
|
|
||
|
video_mask_un = video_mask.to(dtype=torch.float).unsqueeze(-1)
|
||
|
visual_output = visual_output * video_mask_un
|
||
|
video_mask_un_sum = torch.sum(video_mask_un, dim=1, dtype=torch.float)
|
||
|
video_mask_un_sum[video_mask_un_sum == 0.] = 1.
|
||
|
visual_output = torch.sum(visual_output, dim=1) / video_mask_un_sum
|
||
|
|
||
|
visual_output = visual_output / visual_output.norm(dim=-1, keepdim=True)
|
||
|
|
||
|
return visual_output#.unsqueeze(0).cpu().numpy()
|
||
|
|
||
|
|
||
|
#
|
||
|
# @arg(1, to_image_color('RGB'))
|
||
|
# def _inference_from_video(self, img):
|
||
|
# img = to_pil(img)
|
||
|
# image = self.tfms(img).unsqueeze(0).to(self.device)
|
||
|
# image_features = self.model.encode_image(image)
|
||
|
# return image_features
|
||
|
if __name__ == '__main__':
|
||
|
# op = CLIP4Clip('clip_vit_b32', 'text', './pytorch_model.bin.1')
|
||
|
# res = op('kids feeding and playing with the horse')
|
||
|
# print(res.shape)
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
# from towhee import ops
|
||
|
# op = CLIP4Clip('clip_vit_b32', 'video', './pytorch_model.bin.1')
|
||
|
# d = ops.video_decode.ffmpeg(sample_type='uniform_temporal_subsample',
|
||
|
# args={'num_samples': 12})
|
||
|
# # ops.video_decode.get_video_duration()
|
||
|
video_path = '/Users/zilliz/dataset/MSRVTT/MSRVTT/videos/all/video9451.mp4'
|
||
|
# img_list = []
|
||
|
# for frame in d(video_path):
|
||
|
# print(frame)
|
||
|
# img_list.append(frame[0])
|
||
|
# res = op(img_list)
|
||
|
# print(res.shape)
|
||
|
|
||
|
dc = (
|
||
|
towhee.dc['path']([video_path])
|
||
|
.video_decode.ffmpeg['path', 'frames'](
|
||
|
sample_type='uniform_temporal_subsample',
|
||
|
args={'num_samples': 12})
|
||
|
.runas_op['frames', 'frames'](func=lambda x: [y[0] for y in x])
|
||
|
.clip4clip['frames', 'vec'](model_name='clip_vit_b32', modality='video', weight_path='./pytorch_model.bin.1')
|
||
|
)
|
||
|
dc.show()
|
||
|
|