clip4clip
copied
ChengZi
3 years ago
7 changed files with 127 additions and 72 deletions
@ -1,2 +1,111 @@ |
|||
# clip4clip |
|||
# Video-Text Retrieval Embdding with CLIP4Clip |
|||
|
|||
*author: Chen Zhang* |
|||
|
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
|||
## Description |
|||
|
|||
This operator extracts features for video or text with [CLIP4Clip](https://arxiv.org/abs/2104.08860) which can generate embeddings for text and video by jointly training a video encoder and text encoder to maximize the cosine similarity. |
|||
|
|||
|
|||
<br /> |
|||
|
|||
|
|||
## Code Example |
|||
|
|||
Load an video from path './demo_video.mp4' to generate an video embedding. |
|||
|
|||
Read the text 'kids feeding and playing with the horse' to generate an text embedding. |
|||
|
|||
*Write the pipeline in simplified style*: |
|||
|
|||
```python |
|||
import towhee |
|||
|
|||
towhee.dc(['./demo_video.mp4']) \ |
|||
.video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 12}) \ |
|||
.runas_op(func=lambda x: [y[0] for y in x]) \ |
|||
.clip4clip(model_name='clip_vit_b32', modality='video', weight_path='./pytorch_model.bin.1') \ |
|||
.show() |
|||
|
|||
towhee.dc(['kids feeding and playing with the horse']) \ |
|||
.clip4clip(model_name='clip_vit_b32', modality='text', weight_path='./pytorch_model.bin.1') \ |
|||
.show() |
|||
``` |
|||
![](vect_simplified_video.png) |
|||
![](vect_simplified_text.png) |
|||
|
|||
*Write a same pipeline with explicit inputs/outputs name specifications:* |
|||
|
|||
```python |
|||
import towhee |
|||
|
|||
towhee.dc['path'](['./demo_video.mp4']) \ |
|||
.video_decode.ffmpeg['path', 'frames'](sample_type='uniform_temporal_subsample', args={'num_samples': 12}) \ |
|||
.runas_op['frames', 'frames'](func=lambda x: [y[0] for y in x]) \ |
|||
.clip4clip['frames', 'vec'](model_name='clip_vit_b32', modality='video', weight_path='./pytorch_model.bin.1') \ |
|||
.show() |
|||
|
|||
towhee.dc['text'](["kids feeding and playing with the horse"]) \ |
|||
.clip4clip['text','vec'](model_name='clip_vit_b32', modality='text', weight_path='./pytorch_model.bin.1') \ |
|||
.select['text', 'vec']() \ |
|||
.show() |
|||
``` |
|||
|
|||
![](vect_explicit_video.png) |
|||
![](vect_explicit_text.png) |
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
|||
## Factory Constructor |
|||
|
|||
Create the operator via the following factory method |
|||
|
|||
***clip4clip(model_name, modality, weight_path)*** |
|||
|
|||
**Parameters:** |
|||
|
|||
***model_name:*** *str* |
|||
|
|||
The model name of CLIP. Supported model names: |
|||
- clip_vit_b32 |
|||
|
|||
|
|||
***modality:*** *str* |
|||
|
|||
Which modality(*video* or *text*) is used to generate the embedding. |
|||
|
|||
***weight_path:*** *str* |
|||
|
|||
pretrained model weights path. |
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
|||
## Interface |
|||
|
|||
An video-text embedding operator takes a list of [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray. |
|||
|
|||
|
|||
**Parameters:** |
|||
|
|||
***data:*** *List[towhee.types.Image]* or *str* |
|||
|
|||
The data (list of image(which is uniform subsampled from a video) or text based on specified modality) to generate embedding. |
|||
|
|||
|
|||
|
|||
**Returns:** *numpy.ndarray* |
|||
|
|||
The data embedding extracted by model. |
|||
|
|||
|
|||
|
|||
|
|||
|
Binary file not shown.
After Width: | Height: | Size: 36 KiB |
After Width: | Height: | Size: 36 KiB |
After Width: | Height: | Size: 17 KiB |
After Width: | Height: | Size: 18 KiB |
Loading…
Reference in new issue