# Video-Text Retrieval Embdding with CLIP4Clip
*author: Chen Zhang*
## Description
This operator extracts features for video or text with [CLIP4Clip](https://arxiv.org/abs/2104.08860) which can generate embeddings for text and video by jointly training a video encoder and text encoder to maximize the cosine similarity.
## Code Example
Load an video from path './demo_video.mp4' to generate an video embedding.
Read the text 'kids feeding and playing with the horse' to generate an text embedding.
*Write the pipeline in simplified style*:
```python
import towhee
towhee.dc(['./demo_video.mp4']) \
.video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 12}) \
.runas_op(func=lambda x: [y[0] for y in x]) \
.clip4clip(model_name='clip_vit_b32', modality='video', weight_path='./pytorch_model.bin.1') \
.show()
towhee.dc(['kids feeding and playing with the horse']) \
.clip4clip(model_name='clip_vit_b32', modality='text', weight_path='./pytorch_model.bin.1') \
.show()
```
![](vect_simplified_video.png)
![](vect_simplified_text.png)
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
import towhee
towhee.dc['path'](['./demo_video.mp4']) \
.video_decode.ffmpeg['path', 'frames'](sample_type='uniform_temporal_subsample', args={'num_samples': 12}) \
.runas_op['frames', 'frames'](func=lambda x: [y[0] for y in x]) \
.clip4clip['frames', 'vec'](model_name='clip_vit_b32', modality='video', weight_path='./pytorch_model.bin.1') \
.show()
towhee.dc['text'](["kids feeding and playing with the horse"]) \
.clip4clip['text','vec'](model_name='clip_vit_b32', modality='text', weight_path='./pytorch_model.bin.1') \
.select['text', 'vec']() \
.show()
```
![](vect_explicit_video.png)
![](vect_explicit_text.png)
## Factory Constructor
Create the operator via the following factory method
***clip4clip(model_name, modality, weight_path)***
**Parameters:**
***model_name:*** *str*
The model name of CLIP. Supported model names:
- clip_vit_b32
***modality:*** *str*
Which modality(*video* or *text*) is used to generate the embedding.
***weight_path:*** *str*
pretrained model weights path.
## Interface
An video-text embedding operator takes a list of [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray.
**Parameters:**
***data:*** *List[towhee.types.Image]* or *str*
The data (list of image(which is uniform subsampled from a video) or text based on specified modality) to generate embedding.
**Returns:** *numpy.ndarray*
The data embedding extracted by model.