# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from typing import List, Union from torchvision import transforms from towhee.models.clip4clip import convert_tokens_to_id from towhee.operator.base import NNOperator from towhee import register from towhee.models import clip4clip from PIL import Image as PILImage from towhee.types import VideoFrame @register(output_schema=['vec']) class CLIP4Clip(NNOperator): """ CLIP4Clip multi-modal embedding operator """ def __init__(self, model_name: str, modality: str, weight_path: str = None, device: str = None): super().__init__() self.modality = modality if device is None: self.device = "cuda" if torch.cuda.is_available() else "cpu" else: self.device = device self.model = clip4clip.create_model(model_name=model_name, context_length=77, pretrained=True, weights_path=weight_path, device=self.device) self.tokenize = clip4clip.SimpleTokenizer() self.tfms = transforms.Compose([ transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( (0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ]) self.model.eval() def __call__(self, data: Union[str, List[VideoFrame]]): if self.modality == 'video': vec = self._inference_from_video(data) elif self.modality == 'text': vec = self._inference_from_text(data) else: raise ValueError("modality[{}] not implemented.".format(self._modality)) return vec def _inference_from_text(self, text: str): self.model.eval() text_ids = convert_tokens_to_id(self.tokenize, text) text_ids = torch.tensor(text_ids).unsqueeze(0).to(self.device) text_features = self.model.get_sequence_output(text_ids) text_features = text_features / text_features.norm(dim=-1, keepdim=True) return text_features.detach().flatten().cpu().numpy() def _inference_from_video(self, img_list: List[VideoFrame]): self.model.eval() max_frames = 12 video = np.zeros((1, max_frames, 1, 3, 224, 224), dtype=np.float64) slice_len = len(img_list) max_video_length = 0 if 0 > slice_len else slice_len for i, img in enumerate(img_list): pil_img = PILImage.fromarray(img, img.mode) tfmed_img = self.tfms(pil_img).unsqueeze(0) if slice_len >= 1: video[0, i, ...] = tfmed_img.cpu().numpy() video_mask = np.zeros((1, max_frames), dtype=np.int32) video_mask[0, :max_video_length] = [1] * max_video_length video = torch.as_tensor(video).float().to(self.device) pair, bs, ts, channel, h, w = video.shape video = video.view(pair * bs * ts, channel, h, w) video_mask = torch.as_tensor(video_mask).float().to(self.device) visual_output = self.model.get_visual_output(video, video_mask, shaped=True) visual_output = visual_output / visual_output.norm(dim=-1, keepdim=True) video_mask_un = video_mask.to(dtype=torch.float).unsqueeze(-1) visual_output = visual_output * video_mask_un video_mask_un_sum = torch.sum(video_mask_un, dim=1, dtype=torch.float) video_mask_un_sum[video_mask_un_sum == 0.] = 1. visual_output = torch.sum(visual_output, dim=1) / video_mask_un_sum visual_output = visual_output / visual_output.norm(dim=-1, keepdim=True) return visual_output.detach().flatten().cpu().numpy()