# Video-Text Retrieval Embdding with CLIP4Clip *author: Chen Zhang*
## Description This operator extracts features for video or text with [CLIP4Clip](https://arxiv.org/abs/2104.08860) which can generate embeddings for text and video by jointly training a video encoder and text encoder to maximize the cosine similarity.
## Code Example Load an video from path './demo_video.mp4' to generate an video embedding. Read the text 'kids feeding and playing with the horse' to generate an text embedding. *Write the pipeline in simplified style*: ```python import towhee towhee.dc(['./demo_video.mp4']) \ .video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 12}) \ .runas_op(func=lambda x: [y for y in x]) \ .clip4clip(model_name='clip_vit_b32', modality='video', device='cpu') \ .show() towhee.dc(['kids feeding and playing with the horse']) \ .clip4clip(model_name='clip_vit_b32', modality='text', device='cpu') \ .show() ``` ![](vect_simplified_video.png) ![](vect_simplified_text.png) *Write a same pipeline with explicit inputs/outputs name specifications:* ```python import towhee towhee.dc['path'](['./demo_video.mp4']) \ .video_decode.ffmpeg['path', 'frames'](sample_type='uniform_temporal_subsample', args={'num_samples': 12}) \ .runas_op['frames', 'frames'](func=lambda x: [y for y in x]) \ .clip4clip['frames', 'vec'](model_name='clip_vit_b32', modality='video', device='cpu') \ .show() towhee.dc['text'](["kids feeding and playing with the horse"]) \ .clip4clip['text','vec'](model_name='clip_vit_b32', modality='text', device='cpu') \ .select['text', 'vec']() \ .show() ``` ![](vect_explicit_video.png) ![](vect_explicit_text.png)
## Factory Constructor Create the operator via the following factory method ***clip4clip(model_name, modality, weight_path)*** **Parameters:** ​ ***model_name:*** *str* ​ The model name of CLIP. Supported model names: - clip_vit_b32 ​ ***modality:*** *str* ​ Which modality(*video* or *text*) is used to generate the embedding. ​ ***weight_path:*** *str* ​ pretrained model weights path.
## Interface An video-text embedding operator takes a list of [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray. **Parameters:** ​ ***data:*** *List[towhee.types.Image]* or *str* ​ The data (list of image(which is uniform subsampled from a video) or text based on specified modality) to generate embedding. **Returns:** *numpy.ndarray* ​ The data embedding extracted by model.