ChengZi
3 years ago
5 changed files with 208 additions and 1 deletions
@ -1,2 +1,127 @@ |
|||||
# collaborative-experts |
|
||||
|
# Video-Text Retrieval Embedding with Collaborative Experts |
||||
|
|
||||
|
*author: Chen Zhang* |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Description |
||||
|
|
||||
|
This operator extracts features for video or text with [Use What You Have: Video Retrieval Using Representations From Collaborative Experts](https://arxiv.org/pdf/1907.13487v2.pdf). |
||||
|
For video encoder, this operator exploits embeddings with different modality information extracted from pre-trained experts models, such as motion, appearance, scene, ASR or OCR. |
||||
|
For text query encoder, it exploits text embeddings extracted from pre-trained models such as word2vec or GPT. |
||||
|
This operator is a collaborative experts model, which aggregates information from these different pre-trained expert models, and output the video embeddings and text embeddings. |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
## Code Example |
||||
|
|
||||
|
For video input, load embeddings extracted from different upstream expert networks, such as audio, face, action, RGB, OCR and so on. They can be from upstream operators or from disk . |
||||
|
For text query input, load text embeddings extracted from pre-trained models. They can be from upstream operators or from disk . |
||||
|
For `ind` input, if a data in one of the modalities is invalid(such as NaN) or you do not want use it, the corresponding value in `ind` is 0, else 1. |
||||
|
|
||||
|
|
||||
|
*Write the pipeline code*: |
||||
|
|
||||
|
```python |
||||
|
import torch |
||||
|
from towhee import Entity |
||||
|
import towhee |
||||
|
|
||||
|
torch.manual_seed(42) |
||||
|
|
||||
|
batch_size = 8 |
||||
|
experts = {"audio": torch.rand(batch_size, 29, 128), |
||||
|
"face": torch.rand(batch_size, 512), |
||||
|
"i3d.i3d.0": torch.rand(batch_size, 1024), |
||||
|
"imagenet.resnext101_32x48d.0": torch.rand(batch_size, 2048), |
||||
|
"imagenet.senet154.0": torch.rand(batch_size, 2048), |
||||
|
"ocr": torch.rand(batch_size, 49, 300), |
||||
|
"r2p1d.r2p1d-ig65m.0": torch.rand(batch_size, 512), |
||||
|
"scene.densenet161.0": torch.rand(batch_size, 2208), |
||||
|
"speech": torch.rand(batch_size, 32, 300) |
||||
|
} |
||||
|
ind = { |
||||
|
"r2p1d.r2p1d-ig65m.0": torch.ones(batch_size,), |
||||
|
"imagenet.senet154.0": torch.ones(batch_size,), |
||||
|
"imagenet.resnext101_32x48d.0": torch.ones(batch_size,), |
||||
|
"scene.densenet161.0": torch.ones(batch_size,), |
||||
|
"audio": torch.ones(batch_size,), |
||||
|
"speech": torch.ones(batch_size,), |
||||
|
"ocr": torch.randint(low=0, high=2, size=(batch_size,)), |
||||
|
"face": torch.randint(low=0, high=2, size=(batch_size,)), |
||||
|
"i3d.i3d.0": torch.ones(batch_size,), |
||||
|
} |
||||
|
|
||||
|
text = torch.randn(batch_size, 1, 37, 768) |
||||
|
|
||||
|
towhee.dc([Entity(experts=experts, ind=ind, text=text)]) \ |
||||
|
.video_text_embedding.collaborative_experts[('experts', 'ind', 'text'), ('text_embds', 'vid_embds')]().show() |
||||
|
``` |
||||
|
|
||||
|
![](img.png) |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Factory Constructor |
||||
|
|
||||
|
Create the operator via the following factory method |
||||
|
|
||||
|
***collaborative_experts(config: Dict = None, weights_path: str = None, device: str = None)*** |
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
​ ***config:*** *Optional[dict]* |
||||
|
|
||||
|
​ Default is None, if None, use the [default config](https://github.com/towhee-io/towhee/blob/a713ea2deaa0273f0b6af28354a36572e8eba604/towhee/models/collaborative_experts/collaborative_experts.py#L1130) the same as these in the original paper and repo, |
||||
|
|
||||
|
​ ***weights_path:*** *Optional[str]* |
||||
|
|
||||
|
​ Pretrained model weights path, if None, use the weights in this operator. |
||||
|
|
||||
|
​ ***device:*** *Optional[str]* |
||||
|
|
||||
|
​ cpu or cuda. |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Interface |
||||
|
|
||||
|
When video modality, load a video embeddings extracted from different upstream expert networks, such as video, RGB, audio. |
||||
|
When text modality, read the text to generate a text embedding. |
||||
|
|
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
​ ***experts:*** *dict* |
||||
|
|
||||
|
​ Embeddings extracted from different upstream expert networks, such as audio, face, action, RGB, OCR and so on. They can be from upstream operators or from disk . |
||||
|
|
||||
|
​ ***ind:*** *dict* |
||||
|
|
||||
|
​ If a data in one of the modalities is invalid(such as NaN) or you do not want use it, the corresponding value in `ind` is 0, else 1. |
||||
|
|
||||
|
​ ***text:*** *Tensor* |
||||
|
|
||||
|
​ Text embeddings extracted from pre-trained models. They can be from upstream operators or from disk . |
||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
**Returns:** *numpy.ndarray* |
||||
|
|
||||
|
​ Text embeddings and video embeddings. They are both a dict with different modality, the key is the same as input modality, and the value is a tensor with shape (batch size, 768). |
||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
@ -0,0 +1,20 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
|
||||
|
from .collaborative_experts import CollaborativeExperts |
||||
|
|
||||
|
|
||||
|
def collaborative_experts(**kwargs): |
||||
|
return CollaborativeExperts(**kwargs) |
||||
|
|
@ -0,0 +1,59 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
|
||||
|
|
||||
|
from typing import Dict |
||||
|
|
||||
|
from pathlib import Path |
||||
|
from towhee.operator.base import NNOperator |
||||
|
from towhee import register |
||||
|
from towhee.models import collaborative_experts |
||||
|
|
||||
|
import warnings |
||||
|
|
||||
|
warnings.filterwarnings('ignore') |
||||
|
|
||||
|
|
||||
|
@register(output_schema=['vec']) |
||||
|
class CollaborativeExperts(NNOperator): |
||||
|
""" |
||||
|
CollaborativeExperts embedding operator |
||||
|
""" |
||||
|
|
||||
|
def __init__(self, config: Dict = None, weights_path: str = None, device: str = None): |
||||
|
super().__init__() |
||||
|
if weights_path is None: |
||||
|
weights_path = str(Path(__file__).parent / 'trained_model.pth') |
||||
|
self.ce_net_model = collaborative_experts.create_model(config, weights_path, device) |
||||
|
|
||||
|
def __call__(self, experts, ind, text): |
||||
|
out = self.ce_net_model(experts, ind, text) |
||||
|
text_embds = {k: v.squeeze(1).detach().cpu().numpy() for k, v in out['text_embds'].items()} |
||||
|
vid_embds = {k: v.detach().cpu().numpy() for k, v in out['vid_embds'].items()} |
||||
|
return text_embds, vid_embds |
||||
|
|
||||
|
def get_text_embds(self, experts, ind, text): |
||||
|
out = self.ce_net_model(experts, ind, text) |
||||
|
text_embds = {k: v.squeeze(1).detach().cpu().numpy() for k, v in out['text_embds'].items()} |
||||
|
return text_embds |
||||
|
|
||||
|
def get_vid_embds(self, experts, ind, text): |
||||
|
out = self.ce_net_model(experts, ind, text) |
||||
|
vid_embds = {k: v.detach().cpu().numpy() for k, v in out['vid_embds'].items()} |
||||
|
return vid_embds |
||||
|
|
||||
|
def get_cross_view_conf_matrix(self, experts, ind, text): |
||||
|
out = self.ce_net_model(experts, ind, text) |
||||
|
return out['cross_view_conf_matrix'].detach().cpu().numpy() |
||||
|
|
After Width: | Height: | Size: 152 KiB |
@ -0,0 +1,3 @@ |
|||||
|
torch |
||||
|
towhee.models |
||||
|
towhee |
Loading…
Reference in new issue