# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict from pathlib import Path from towhee.operator.base import NNOperator from towhee import register from towhee.models import collaborative_experts import warnings warnings.filterwarnings('ignore') @register(output_schema=['vec']) class CollaborativeExperts(NNOperator): """ CollaborativeExperts embedding operator """ def __init__(self, config: Dict = None, weights_path: str = None, device: str = None): super().__init__() if weights_path is None: weights_path = str(Path(__file__).parent / 'trained_model.pth') self.ce_net_model = collaborative_experts.create_model(config, weights_path, device) def __call__(self, experts, ind, text): out = self.ce_net_model(experts, ind, text) text_embds = {k: v.squeeze(1).detach().cpu().numpy() for k, v in out['text_embds'].items()} vid_embds = {k: v.detach().cpu().numpy() for k, v in out['vid_embds'].items()} return text_embds, vid_embds def get_text_embds(self, experts, ind, text): out = self.ce_net_model(experts, ind, text) text_embds = {k: v.squeeze(1).detach().cpu().numpy() for k, v in out['text_embds'].items()} return text_embds def get_vid_embds(self, experts, ind, text): out = self.ce_net_model(experts, ind, text) vid_embds = {k: v.detach().cpu().numpy() for k, v in out['vid_embds'].items()} return vid_embds def get_cross_view_conf_matrix(self, experts, ind, text): out = self.ce_net_model(experts, ind, text) return out['cross_view_conf_matrix'].detach().cpu().numpy()