# Video-Text Retrieval Embedding with DRL *author: Chen Zhang*
## Description This operator extracts features for video or text with [DRL(Disentangled Representation Learning for Text-Video Retrieval)](https://arxiv.org/pdf/2203.07111v1.pdf), and then it can get the similarity by Weighted Token-wise Interaction (WTI) module.
![](WTI.png) ## Code Example Load an video from path './demo_video.mp4' to generate a video embedding. Read the text 'kids feeding and playing with the horse' to generate a text embedding. *Write the pipeline in simplified style*: ```python import towhee towhee.dc(['./demo_video.mp4']) \ .video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 12}) \ .runas_op(func=lambda x: [y for y in x]) \ .drl(base_encoder='clip_vit_b32', modality='video', device='cpu') \ .show() towhee.dc(['kids feeding and playing with the horse']) \ .drl(base_encoder='clip_vit_b32', modality='text', device='cpu') \ .show() ``` ![](vect_simplified_video.png) ![](vect_simplified_text.png) *Write a same pipeline with explicit inputs/outputs name specifications:* ```python import towhee towhee.dc['path'](['./demo_video.mp4']) \ .video_decode.ffmpeg['path', 'frames'](sample_type='uniform_temporal_subsample', args={'num_samples': 12}) \ .runas_op['frames', 'frames'](func=lambda x: [y for y in x]) \ .drl['frames', 'vec'](base_encoder='clip_vit_b32', modality='video', device='cpu') \ .show(formatter={'path': 'video_path'}) towhee.dc['text'](['kids feeding and playing with the horse']) \ .drl['text','vec'](base_encoder='clip_vit_b32', modality='text', device='cpu') \ .select['text', 'vec']() \ .show() ``` ![](vect_explicit_video.png) ![](vect_explicit_text.png)
## Factory Constructor Create the operator via the following factory method ***drl(base_encoder, modality)*** **Parameters:** ​ ***base_encoder:*** *str* ​ The base CLIP encode name in DRL model. Supported model names: - clip_vit_b32 ​ ***modality:*** *str* ​ Which modality(*video* or *text*) is used to generate the embedding.
## Interface An video-text embedding operator takes a list of [towhee VideoFrame](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray. **Parameters:** ​ ***data:*** *List[towhee.types.VideoFrame]* or *str* ​ The data (list of VideoFrame(which is uniform subsampled from a video) or text based on specified modality) to generate embedding. **Returns:** *numpy.ndarray* ​ The data embedding extracted by model. When text, the shape is (text_token_num, model_dim), when video, the shape is (video_token_num, model_dim)