# Video-Text Retrieval Embedding with DRL
*author: Chen Zhang*
## Description
This operator extracts features for video or text with [DRL(Disentangled Representation Learning for Text-Video Retrieval)](https://arxiv.org/pdf/2203.07111v1.pdf), and then it can get the similarity by Weighted Token-wise Interaction (WTI) module.

## Code Example
Load an video from path './demo_video.mp4' to generate a video embedding.
Read the text 'kids feeding and playing with the horse' to generate a text embedding.
*Write the pipeline in simplified style*:
```python
import towhee
towhee.dc(['./demo_video.mp4']) \
.video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 12}) \
.runas_op(func=lambda x: [y for y in x]) \
.drl(base_encoder='clip_vit_b32', modality='video', device='cpu') \
.show()
towhee.dc(['kids feeding and playing with the horse']) \
.drl(base_encoder='clip_vit_b32', modality='text', device='cpu') \
.show()
```


*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
import towhee
towhee.dc['path'](['./demo_video.mp4']) \
.video_decode.ffmpeg['path', 'frames'](sample_type='uniform_temporal_subsample', args={'num_samples': 12}) \
.runas_op['frames', 'frames'](func=lambda x: [y for y in x]) \
.drl['frames', 'vec'](base_encoder='clip_vit_b32', modality='video', device='cpu') \
.show(formatter={'path': 'video_path'})
towhee.dc['text'](['kids feeding and playing with the horse']) \
.drl['text','vec'](base_encoder='clip_vit_b32', modality='text', device='cpu') \
.select['text', 'vec']() \
.show()
```


## Factory Constructor
Create the operator via the following factory method
***drl(base_encoder, modality)***
**Parameters:**
***base_encoder:*** *str*
The base CLIP encode name in DRL model. Supported model names:
- clip_vit_b32
***modality:*** *str*
Which modality(*video* or *text*) is used to generate the embedding.
## Interface
An video-text embedding operator takes a list of [towhee VideoFrame](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray.
**Parameters:**
***data:*** *List[towhee.types.VideoFrame]* or *str*
The data (list of VideoFrame(which is uniform subsampled from a video) or text based on specified modality) to generate embedding.
**Returns:** *numpy.ndarray*
The data embedding extracted by model. When text, the shape is (text_token_num, model_dim), when video, the shape is (video_token_num, model_dim)