# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from typing import List, Union from torchvision import transforms from towhee.models.clip4clip import convert_tokens_to_id from towhee.operator.base import NNOperator from towhee import register from towhee.models import drl, clip4clip from PIL import Image as PILImage from towhee.types import VideoFrame from pathlib import Path @register(output_schema=['vec']) class DRL(NNOperator): """ DRL multi-modal embedding operator """ def __init__(self, base_encoder: str, modality: str, weight_path: str = None, device: str = None): super().__init__() self.modality = modality if weight_path is None: weight_path = str(Path(__file__).parent / 'clip_vit_b32_wti.pth') if device is None: self.device = "cuda" if torch.cuda.is_available() else "cpu" else: self.device = device self.model = drl.create_model(base_encoder=base_encoder, pretrained=True, cdcr=0, weights_path=weight_path, device=device) self.tokenize = clip4clip.SimpleTokenizer() self.tfms = transforms.Compose([ transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( (0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ]) self.model.eval() def __call__(self, data: Union[str, List[VideoFrame]]): if self.modality == 'video': vec = self._inference_from_video(data) elif self.modality == 'text': vec = self._inference_from_text(data) else: raise ValueError("modality[{}] not implemented.".format(self._modality)) return vec def _inference_from_text(self, text: str): self.model.eval() text_ids = convert_tokens_to_id(self.tokenize, text) text_ids = torch.tensor(text_ids).unsqueeze(0).to(self.device) text_features = self.model.get_text_feat(text_ids) # B(1), N_t, D return text_features.squeeze(0).detach().cpu().numpy() # N_t, D def _inference_from_video(self, img_list: List[VideoFrame]): self.model.eval() max_frames = 12 video = np.zeros((1, max_frames, 1, 3, 224, 224), dtype=np.float64) slice_len = len(img_list) max_video_length = 0 if 0 > slice_len else slice_len for i, img in enumerate(img_list): pil_img = PILImage.fromarray(img, img.mode) tfmed_img = self.tfms(pil_img).unsqueeze(0) if slice_len >= 1: video[0, i, ...] = tfmed_img.cpu().numpy() video_mask = np.zeros((1, max_frames), dtype=np.int32) video_mask[0, :max_video_length] = [1] * max_video_length video = torch.as_tensor(video).float().to(self.device) pair, bs, ts, channel, h, w = video.shape video = video.view(pair * bs * ts, channel, h, w) video_mask = torch.as_tensor(video_mask).float().to(self.device) visual_output = self.model.get_video_feat(video, video_mask, shaped=True) # B(1), N_v, D return visual_output.squeeze(0).detach().cpu().numpy() # N_v, D def get_similarity_logits(self, text_feat, video_feat, text_mask, video_mask): """ Input is the embedding feature extracted from text or video, calculate the similarity matrix. When input batch size is 1, return one similarity value. Args: text_feat (`torch.Tensor`): Shape is (B, N_t, D). B means batch size, N_t means token length of text, D mean the dim of the network. video_feat (`torch.Tensor`): Shape is (B, N_v, D). B means batch size, N_t means token length of video, D mean the dim of the network. text_mask (`torch.Tensor`): Shape is (B, N_t), valid token position is 1, else 0. video_mask (`torch.Tensor`): Shape is (B, N_v), valid token position is 1, else 0. Returns: Similarity matrix with shape (B, B) """ t2v_logits, _, _ = self.model.get_similarity_logits(text_feat, video_feat, text_mask, video_mask, shaped=True) # (B, B) return t2v_logits # if __name__ == '__main__': # from towhee.models.clip import SimpleTokenizer # text = 'hello world' # ids = convert_tokens_to_id(SimpleTokenizer(), text, max_words=32) # print(ids) # text_mask = [[1 if i > 0 else 0 for i in ids[0]]] # print(text_mask)