# Video-Text Retrieval Embedding with DRL *author: Chen Zhang*
## Description This operator extracts features for video or text with [DRL(Disentangled Representation Learning for Text-Video Retrieval)](https://arxiv.org/pdf/2203.07111v1.pdf), and then it can get the similarity by Weighted Token-wise Interaction (WTI) module.
![](WTI.png) ## Code Example Read the text 'kids feeding and playing with the horse' to generate a text embedding. ```python from towhee import pipe, ops, DataCollection p = ( pipe.input('text') \ .map('text', 'vec', ops.video_text_embedding.drl(base_encoder='clip_vit_b32', modality='text', device='cuda:0')) \ .output('text', 'vec') ) DataCollection(p('kids feeding and playing with the horse')).show() ``` ![](text_emb_result.png) Load an video from path './demo_video.mp4' to generate a video embedding. ```python from towhee import pipe, ops, DataCollection p = ( pipe.input('video_path') \ .map('video_path', 'flame_gen', ops.video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 12})) \ .map('flame_gen', 'flame_list', lambda x: [y for y in x]) \ .map('flame_list', 'vec', ops.video_text_embedding.drl(base_encoder='clip_vit_b32', modality='video', device='cuda:0')) \ .output('video_path', 'flame_list', 'vec') ) DataCollection(p('./demo_video.mp4')).show() ``` ![](video_emb_result.png)
Note: For this model, cpu is not support, and you must specify device='cuda...' ## Factory Constructor Create the operator via the following factory method ***drl(base_encoder, modality)*** **Parameters:** ​ ***base_encoder:*** *str* ​ The base CLIP encode name in DRL model. Supported model names: - clip_vit_b32 ​ ***modality:*** *str* ​ Which modality(*video* or *text*) is used to generate the embedding.
## Interface An video-text embedding operator takes a list of [towhee VideoFrame](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray. **Parameters:** ​ ***data:*** *List[towhee.types.VideoFrame]* or *str* ​ The data (list of VideoFrame(which is uniform subsampled from a video) or text based on specified modality) to generate embedding. **Returns:** *numpy.ndarray* ​ The data embedding extracted by model. When text, the shape is (text_token_num, model_dim), when video, the shape is (video_token_num, model_dim)