diff --git a/README.md b/README.md index ad49919..16b6918 100644 --- a/README.md +++ b/README.md @@ -1,2 +1,112 @@ -# frozen-in-time +# Video-Text Retrieval Embedding with Frozen In Time + +*author: Jinling Xu* + + +
+ + + +## Description + +This operator extracts features for video or text with [Frozen In Time](https://arxiv.org/abs/2104.00650) which can generate embeddings for text and video by jointly training a video encoder and text encoder to maximize the cosine similarity. + + +
+ + +## Code Example + +Load a video from path './demo_video.mp4' to generate a video embedding. + +Read the text 'kids feeding and playing with the horse' to generate a text embedding. + + *Write the pipeline in simplified style*: + +- Encode video (default): +```python +import towhee +towhee.dc(['./demo_video.mp4']) \ + .video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 4}) \ + .runas_op(func=lambda x: [y for y in x]) \ + .video_text_embedding.frozen_in_time(model_name='frozen_in_time_base_16_244', modality='video', device='cpu') \ + .show() + +``` +- Encode text: +```python +import towhee + +towhee.dc(['kids feeding and playing with the horse']) \ + .video_text_embedding.frozen_in_time(model_name='frozen_in_time_base_16_244', modality='text', device='cpu') \ + .show() +``` + +*Write a same pipeline with explicit inputs/outputs name specifications:* + +```python +import towhee + +towhee.dc['path'](['./demo_video.mp4']) \ + .video_decode.ffmpeg['path', 'frames'](sample_type='uniform_temporal_subsample', args={'num_samples': 4}) \ + .runas_op['frames', 'frames'](func=lambda x: [y for y in x]) \ + .video_text_embedding.frozen_in_time['frames', 'vec'](model_name='frozen_in_time_base_16_244', modality='video', device='cpu') \ + .show() + +towhee.dc['text'](["kids feeding and playing with the horse"]) \ + .video_text_embedding.frozen_in_time['text','vec'](model_name='frozen_in_time_base_16_244', modality='text', device='cpu') \ + .select['text', 'vec']() \ + .show() +``` + + +
+ + + +## Factory Constructor + +Create the operator via the following factory method + +***frozen_in_time(model_name, modality, weight_path)*** + +**Parameters:** + +​ ***model_name:*** *str* + +​ The model name of frozen in time. Supported model names: +- frozen_in_time_base_16_244 + + +​ ***modality:*** *str* + +​ Which modality(*video* or *text*) is used to generate the embedding. + +​ ***weight_path:*** *str* + +​ pretrained model weights path. + +
+ + + +## Interface + +An video-text embedding operator takes a list of [Towhee VideoFrame](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray. + + +**Parameters:** + +​ ***data:*** *List[towhee.types.Image]* or *str* + +​ The data (list of Towhee VideoFrame (which is uniform subsampled from a video) or text based on specified modality) to generate embedding. + + + +**Returns:** *numpy.ndarray* + +​ The data embedding extracted by model. + + + diff --git a/__init__.py b/__init__.py new file mode 100644 index 0000000..9f987c8 --- /dev/null +++ b/__init__.py @@ -0,0 +1,20 @@ +# Copyright 2021 Zilliz. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from .frozen_in_time import FrozenInTime + + +def frozen_in_time(model_name: str, modality: str, **kwargs): + return FrozenInTime(model_name, modality, **kwargs) + diff --git a/demo_video.mp4 b/demo_video.mp4 new file mode 100755 index 0000000..e6fb645 Binary files /dev/null and b/demo_video.mp4 differ diff --git a/frozen_in_time.py b/frozen_in_time.py new file mode 100644 index 0000000..4aaece4 --- /dev/null +++ b/frozen_in_time.py @@ -0,0 +1,112 @@ +# Copyright 2021 Zilliz. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import numpy +import numpy as np +import torch + +from typing import List, Union +from torchvision import transforms +from towhee.models import frozen_in_time +from towhee.operator.base import NNOperator +from towhee import register +from PIL import Image as PILImage +from towhee.types import VideoFrame +from towhee.models.utils.video_transforms import transform_video, get_configs +from pathlib import Path +from transformers import AutoTokenizer + + +@register(output_schema=['vec']) +class FrozenInTime(NNOperator): + """ + extracts features for video or text with Frozen In Time model + Args: + model_name (str): + Frozen In Time model name to be used in FrozenInTime + modality (str): + Flag to decide what to return + - 'video': return video embedding + - 'text': return a dense of text embeddings + weight_path (str): + Pretrained model weights + device (str): + the device to run model + """ + + def __init__(self, model_name: str = 'frozen_in_time_base_16_244', modality: str = 'video', + weight_path: str = None, + device: str = None): + super().__init__() + self.model_name = model_name + self.modality = modality + if weight_path is None: + weight_path = str(Path(__file__).parent / 'frozen_in_time_base_16_224.pth') + if device is None: + self.device = "cuda" if torch.cuda.is_available() else "cpu" + else: + self.device = device + self.num_frames = 4 + self.model = frozen_in_time.FrozenInTime(img_size=224, + patch_size=16, + in_chans=3, + num_frames=self.num_frames, + attention_style='frozen_in_time', + is_pretrained=True, + weights_path=weight_path, + projection_dim=256, + video_pretrained_model='vit_base_16x224', + video_is_load_pretrained=False, + video_model_type='SpaceTimeTransformer', + text_is_load_pretrained=False, + device=device) + + self.tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased', TOKENIZERS_PARALLELISM=False) + self.transform_cfgs = get_configs( + side_size=224, + crop_size=224, + num_frames=self.num_frames, + mean=[0.48145466, 0.4578275, 0.40821073], + std=[0.26862954, 0.26130258, 0.27577711], + ) + self.model.eval() + + def __call__(self, data: Union[List[VideoFrame], List[str]]): + if self.modality == 'video': + vec = self._inference_from_video(data) + elif self.modality == 'text': + vec = self._inference_from_text(data) + else: + raise ValueError("modality[{}] not implemented.".format(self._modality)) + return vec + + def _inference_from_text(self, text: List[str]): + text_data = self.tokenizer(text, return_tensors='pt') + # text_data = torch.tensor(text) + text_data = text_data.to(self.device) + text_features = self.model.compute_text(text_data) + return text_features.squeeze(0).detach().flatten().cpu().numpy() + + def _inference_from_video(self, data: List[VideoFrame]): + # Convert list of towhee.types.Image to numpy.ndarray in float32 + video = numpy.stack([img.astype(numpy.float32) / 255. for img in data], axis=0) + assert len(video.shape) == 4 + video = video.transpose(3, 0, 1, 2) # twhc -> ctwh + video = transform_video( + video=video, + **self.transform_cfgs + ) + video = video.to(self.device)[None, ...].transpose(1, 2) + visual_features = self.model.compute_video(video) + return visual_features.squeeze(0).detach().flatten().cpu().numpy() + diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000..aa91a4e --- /dev/null +++ b/requirements.txt @@ -0,0 +1,3 @@ +transformers>=4.19.2 +einops>=0.4.1 +timm>=0.4.12 \ No newline at end of file