# Video-Text Retrieval Embedding with Frozen In Time *author: Jinling Xu* <br /> ## Description This operator extracts features for video or text with [Frozen In Time](https://arxiv.org/abs/2104.00650) which can generate embeddings for text and video by jointly training a video encoder and text encoder to maximize the cosine similarity. <br /> ## Code Example Load a video from path './demo_video.mp4' to generate a video embedding. Read the text 'kids feeding and playing with the horse' to generate a text embedding. *Write the pipeline in simplified style*: - Encode video (default): ```python import towhee towhee.dc(['./demo_video.mp4']) \ .video_decode.ffmpeg(sample_type='uniform_temporal_subsample', args={'num_samples': 4}) \ .runas_op(func=lambda x: [y for y in x]) \ .video_text_embedding.frozen_in_time(model_name='frozen_in_time_base_16_244', modality='video', device='cpu') \ .show() ``` <img src="./result1.png" width="800px"/> - Encode text: ```python import towhee towhee.dc(['kids feeding and playing with the horse']) \ .video_text_embedding.frozen_in_time(model_name='frozen_in_time_base_16_244', modality='text', device='cpu') \ .show() ``` <img src="./result2.png" width="800px"/> *Write a same pipeline with explicit inputs/outputs name specifications:* ```python import towhee towhee.dc['path'](['./demo_video.mp4']) \ .video_decode.ffmpeg['path', 'frames'](sample_type='uniform_temporal_subsample', args={'num_samples': 4}) \ .runas_op['frames', 'frames'](func=lambda x: [y for y in x]) \ .video_text_embedding.frozen_in_time['frames', 'vec'](model_name='frozen_in_time_base_16_244', modality='video', device='cpu') \ .select['path', 'vec']() \ .show(formatter={'path': 'video_path'}) towhee.dc['text'](["kids feeding and playing with the horse"]) \ .video_text_embedding.frozen_in_time['text','vec'](model_name='frozen_in_time_base_16_244', modality='text', device='cpu') \ .select['text', 'vec']() \ .show() ``` <img src="./result3.png" width="800px"/> <img src="./result4.png" width="800px"/> <br /> ## Factory Constructor Create the operator via the following factory method ***frozen_in_time(model_name, modality, weight_path)*** **Parameters:** ***model_name:*** *str* The model name of frozen in time. Supported model names: - frozen_in_time_base_16_244 ***modality:*** *str* Which modality(*video* or *text*) is used to generate the embedding. ***weight_path:*** *str* pretrained model weights path. <br /> ## Interface An video-text embedding operator takes a list of [Towhee VideoFrame](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray. **Parameters:** ***data:*** *List[towhee.types.Image]* or *str* The data (list of Towhee VideoFrame (which is uniform subsampled from a video) or text based on specified modality) to generate embedding. **Returns:** *numpy.ndarray* The data embedding extracted by model.