copied
Readme
Files and versions
2.9 KiB
Video-Text Retrieval Embdding with MDMMT
author: Chen Zhang
Description
This operator extracts features for video or text with MDMMT: Multidomain Multimodal Transformer for Video Retrieval, which can generate embeddings for text and video by jointly training a video encoder and text encoder to maximize the cosine similarity.
Code Example
Read the text to generate a text embedding.
from towhee.dc2 import pipe, ops, DataCollection
p = (
pipe.input('text') \
.map('text', 'vec', ops.video_text_embedding.mdmmt(modality='text', device='cuda:0')) \
.output('text', 'vec')
)
DataCollection(p('Hello world.')).show()
Load a video embeddings extracted from different upstream expert networks, such as video, RGB, audio.
import torch
from towhee.dc2 import pipe, ops, DataCollection
torch.manual_seed(42)
# features are embeddings extracted from the upstream models.
features = {
"VIDEO": torch.rand(30, 2048),
"CLIP": torch.rand(30, 512),
"tf_vggish": torch.rand(30, 128),
}
# features_t is the time series of the features, usually uniformly sampled.
features_t = {
"VIDEO": torch.linspace(1, 30, steps=30),
"CLIP": torch.linspace(1, 30, steps=30),
"tf_vggish": torch.linspace(1, 30, steps=30),
}
# features_ind is the mask of the features.
features_ind = {
"VIDEO": torch.as_tensor([1] * 25 + [0] * 5),
"CLIP": torch.as_tensor([1] * 25 + [0] * 5),
"tf_vggish": torch.as_tensor([1] * 25 + [0] * 5),
}
video_input_dict = {"features": features, "features_t": features_t, "features_ind": features_ind}
p = (
pipe.input('video_input_dict') \
.map('video_input_dict', 'vec', ops.video_text_embedding.mdmmt(modality='video', device='cuda:0')) \
.output('video_input_dict', 'vec')
)
DataCollection(p(video_input_dict)).show()
Factory Constructor
Create the operator via the following factory method
mdmmt(modality: str)
Parameters:
modality: str
Which modality(video or text) is used to generate the embedding.
weight_path: Optional[str]
pretrained model weights path.
device: Optional[str]
cpu or cuda.
mmtvid_params: Optional[dict]
mmtvid model params for custom model.
mmttxt_params: Optional[dict]
mmttxt model params for custom model.
Interface
When video modality, load a video embeddings extracted from different upstream expert networks, such as video, RGB, audio.
When text modality, read the text to generate a text embedding.
Parameters:
data: dict or str
The embedding dict extracted from different upstream expert networks or text, based on specified modality).
Returns: numpy.ndarray
The data embedding extracted by model.
2.9 KiB
Video-Text Retrieval Embdding with MDMMT
author: Chen Zhang
Description
This operator extracts features for video or text with MDMMT: Multidomain Multimodal Transformer for Video Retrieval, which can generate embeddings for text and video by jointly training a video encoder and text encoder to maximize the cosine similarity.
Code Example
Read the text to generate a text embedding.
from towhee.dc2 import pipe, ops, DataCollection
p = (
pipe.input('text') \
.map('text', 'vec', ops.video_text_embedding.mdmmt(modality='text', device='cuda:0')) \
.output('text', 'vec')
)
DataCollection(p('Hello world.')).show()
Load a video embeddings extracted from different upstream expert networks, such as video, RGB, audio.
import torch
from towhee.dc2 import pipe, ops, DataCollection
torch.manual_seed(42)
# features are embeddings extracted from the upstream models.
features = {
"VIDEO": torch.rand(30, 2048),
"CLIP": torch.rand(30, 512),
"tf_vggish": torch.rand(30, 128),
}
# features_t is the time series of the features, usually uniformly sampled.
features_t = {
"VIDEO": torch.linspace(1, 30, steps=30),
"CLIP": torch.linspace(1, 30, steps=30),
"tf_vggish": torch.linspace(1, 30, steps=30),
}
# features_ind is the mask of the features.
features_ind = {
"VIDEO": torch.as_tensor([1] * 25 + [0] * 5),
"CLIP": torch.as_tensor([1] * 25 + [0] * 5),
"tf_vggish": torch.as_tensor([1] * 25 + [0] * 5),
}
video_input_dict = {"features": features, "features_t": features_t, "features_ind": features_ind}
p = (
pipe.input('video_input_dict') \
.map('video_input_dict', 'vec', ops.video_text_embedding.mdmmt(modality='video', device='cuda:0')) \
.output('video_input_dict', 'vec')
)
DataCollection(p(video_input_dict)).show()
Factory Constructor
Create the operator via the following factory method
mdmmt(modality: str)
Parameters:
modality: str
Which modality(video or text) is used to generate the embedding.
weight_path: Optional[str]
pretrained model weights path.
device: Optional[str]
cpu or cuda.
mmtvid_params: Optional[dict]
mmtvid model params for custom model.
mmttxt_params: Optional[dict]
mmttxt model params for custom model.
Interface
When video modality, load a video embeddings extracted from different upstream expert networks, such as video, RGB, audio.
When text modality, read the text to generate a text embedding.
Parameters:
data: dict or str
The embedding dict extracted from different upstream expert networks or text, based on specified modality).
Returns: numpy.ndarray
The data embedding extracted by model.