4 changed files with 151 additions and 1 deletions
@ -1,2 +1,83 @@ |
|||||
# Dolly |
|
||||
|
# OpenAI Chat Completion |
||||
|
|
||||
|
*author: Jael* |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
## Description |
||||
|
|
||||
|
A LLM operator generates answer given prompt in messages using a large language model or service. |
||||
|
This operator uses a pretrained [Dolly](https://github.com/databrickslabs/dolly) to generate response. |
||||
|
It will download model from [HuggingFace Models](https://huggingface.co/models). |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
## Code Example |
||||
|
|
||||
|
Use the default model to continue the conversation from given messages. |
||||
|
|
||||
|
*Write a pipeline with explicit inputs/outputs name specifications:* |
||||
|
|
||||
|
```python |
||||
|
from towhee import pipe, ops |
||||
|
|
||||
|
p = ( |
||||
|
pipe.input('messages') |
||||
|
.map('messages', 'answer', ops.LLM.Dolly()) |
||||
|
.output('messages', 'answer') |
||||
|
) |
||||
|
|
||||
|
messages=[ |
||||
|
{'question': 'Who won the world series in 2020?', 'answer': 'The Los Angeles Dodgers won the World Series in 2020.'}, |
||||
|
{'question': 'Where was it played?'} |
||||
|
] |
||||
|
answer = p(messages) |
||||
|
``` |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
## Factory Constructor |
||||
|
|
||||
|
Create the operator via the following factory method: |
||||
|
|
||||
|
***LLM.Dolly(model_name: str)*** |
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***model_name***: *str* |
||||
|
|
||||
|
The model name in string, defaults to 'databricks/dolly-v2-12b'. Supported model names: |
||||
|
- databricks/dolly-v2-12b |
||||
|
- databricks/dolly-v2-7b |
||||
|
- databricks/dolly-v2-3b |
||||
|
- databricks/dolly-v1-6b |
||||
|
|
||||
|
***\*\*kwargs*** |
||||
|
|
||||
|
Other Dolly model parameters such as device_map. |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
## Interface |
||||
|
|
||||
|
The operator takes a piece of text in string as input. |
||||
|
It returns answer in json. |
||||
|
|
||||
|
***\_\_call\_\_(txt)*** |
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***messages***: *list* |
||||
|
|
||||
|
A list of messages to set up chat. |
||||
|
Must be a list of dictionaries with key value from "system", "question", "answer". For example, [{"question": "a past question?", "answer": "a past answer."}, {"question": "current question?"}] |
||||
|
|
||||
|
**Returns**: |
||||
|
|
||||
|
*answer: str* |
||||
|
|
||||
|
The answer generated. |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
@ -0,0 +1,5 @@ |
|||||
|
from .hf_dolly import HuggingfaceDolly |
||||
|
|
||||
|
|
||||
|
def Dolly(*args, **kwargs): |
||||
|
return HuggingfaceDolly(*args, **kwargs) |
@ -0,0 +1,62 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
|
||||
|
from typing import List |
||||
|
|
||||
|
import torch |
||||
|
from transformers import pipeline |
||||
|
|
||||
|
from towhee.operator.base import PyOperator |
||||
|
|
||||
|
|
||||
|
class HuggingfaceDolly(PyOperator): |
||||
|
'''Wrapper of OpenAI Chat API''' |
||||
|
def __init__(self, |
||||
|
model_name: str = 'databricks/dolly-v2-12b', |
||||
|
**kwargs |
||||
|
): |
||||
|
torch_dtype = kwargs.get('torch_dtype', torch.bfloat16) |
||||
|
trust_remote_code = kwargs.get('trust_remote_code', True) |
||||
|
device_map = kwargs.get('device_map', 'auto') |
||||
|
|
||||
|
self.pipeline = pipeline(model=model_name, torch_dtype=torch_dtype, trust_remote_code=trust_remote_code, device_map=device_map) |
||||
|
|
||||
|
def __call__(self, messages: List[dict]): |
||||
|
prompt = self.parse_inputs(messages) |
||||
|
ans = self.pipeline(prompt) |
||||
|
return ans |
||||
|
|
||||
|
def parse_inputs(self, messages: List[dict]): |
||||
|
assert isinstance(messages, list), \ |
||||
|
'Inputs must be a list of dictionaries with keys from ["system", "question", "answer"].' |
||||
|
prompt = messages[-1]['question'] |
||||
|
history = '' |
||||
|
for m in messages[:-1]: |
||||
|
for k, v in m.items(): |
||||
|
line = k + ': ' + v + '\n' |
||||
|
history += line |
||||
|
return prompt + '\n' + history |
||||
|
|
||||
|
|
||||
|
@staticmethod |
||||
|
def supported_model_names(): |
||||
|
model_list = [ |
||||
|
'databricks/dolly-v2-12b', |
||||
|
'databricks/dolly-v2-7b', |
||||
|
'databricks/dolly-v2-3b', |
||||
|
'databricks/dolly-v1-6b' |
||||
|
] |
||||
|
model_list.sort() |
||||
|
return model_list |
||||
|
|
@ -0,0 +1,2 @@ |
|||||
|
transformers[torch]>=4.28.1,<5 |
||||
|
torch>=1.13.1,<2 |
Loading…
Reference in new issue