logo
Ernie
repo-copy-icon

copied

You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

118 lines
3.3 KiB

# Ernie Bot 文心一言
*author: Jael*
<br />
## Description 描述
A LLM operator generates answer given prompt in messages using a large language model or service.
This operator is implemented with Ernie Bot from [Baidu](https://cloud.baidu.com/wenxin.html).
Please note you will need [Ernie API key & Secret key](https://ai.baidu.com/ai-doc/REFERENCE/Lkru0zoz4) to access the service.
LLM 算子使用大语言模型或服务,为输入的问题或提示生成答案。LLM/Ernie 利用了来自百度的[文心一言](https://cloud.baidu.com/wenxin.html)。请注意,您需要[文心一言服务的 API Key 和 Secret Key](https://ai.baidu.com/ai-doc/REFERENCE/Lkru0zoz4)才能访问该服务。
<br />
## Code Example 代码示例
*Write a pipeline with explicit inputs/outputs name specifications:*
```python
from towhee import pipe, ops
p = (
pipe.input('messages')
.map('messages', 'answer', ops.LLM.Ernie(api_key=ERNIE_API_KEY, secret_key=ERNIE_SECRET_KEY, temperature=0.5))
.output('answer')
)
messages=[
{'question': 'Zilliz Cloud 是什么?', 'answer': 'Zilliz Cloud 是一种全托管的向量检索服务。'},
{'question': '它和 Milvus 的关系是什么?'}
]
answer = p(messages).get()[0]
```
*Write a [retrieval-augmented generation pipeline](https://towhee.io/tasks/detail/pipeline/retrieval-augmented-generation) with explicit inputs/outputs name specifications:*
```python
from towhee import pipe, ops
temp = '''根据以下材料回答最末尾的问题:
{context}
问题:{question}
'''
docs = ['你可以通过`pip install towhee` 安装 Towhee。']
history = [
('什么是 Towhee?', 'Towhee 是一个开源项目,可以将非结构化数据转换为向量。')
]
question = '怎么安装它?'
p = (
pipe.input('question', 'docs', 'history')
.map(('question', 'docs', 'history'), 'prompt', ops.prompt.template(temp, ['question', 'context']))
.map('prompt', 'answer',
ops.LLM.Ernie(api_key=ERNIE_API_KEY, secret_key=ERNIE_SECRET_KEY)
)
.output('answer')
)
answer = p(question, docs, history).get()[0]
```
<br />
## Factory Constructor 接口说明
Create the operator via the following factory method:
***LLM.Ernie(api_key: str, secret_key: str)***
**Parameters:**
***api_key***: *str=None*
The Ernie API key in string, defaults to None. If None, it will use the environment variable `ERNIE_API_KEY`.
***secret_key***: *str=None*
The Ernie Secret key in string, defaults to None. If None, it will use the environment variable `ERNIE_SECRET_KEY`.
***\*\*kwargs***
Other Ernie parameters such as temperature, etc.
<br />
## Interface 使用说明
The operator takes a piece of text in string as input.
It returns answer in json.
***\_\_call\_\_(txt)***
**Parameters:**
***messages***: *list*
​ A list of messages to set up chat.
Must be a list of dictionaries with key value from "question", "answer". For example, [{"question": "a past question?", "answer": "a past answer."}, {"question": "current question?"}].
It also accepts the orignal Ernie message format like [{"role": "user", "content": "a question?"}, {"role": "assistant", "content": "an answer."}]
**Returns**:
*answer: str*
​ The next answer generated by role "assistant".
<br />
2 years ago